Machine Learning | (11) 回归性能评估与欠拟合、过拟合

简介: Machine Learning | (11) 回归性能评估与欠拟合、过拟合

Machine Learning | 机器学习简介


Machine Learning | (1) Scikit-learn与特征工程


Machine Learning | (2) sklearn数据集与机器学习组成


Machine Learning | (3) Scikit-learn的分类器算法-k-近邻


Machine Learning | (4) Scikit-learn的分类器算法-逻辑回归


Machine Learning | (5) Scikit-learn的分类器算法-朴素贝叶斯


Machine Learning | (6) Scikit-learn的分类器算法-性能评估


Machine Learning | (7) Scikit-learn的分类器算法-决策树(Decision Tree)


Machine Learning | (8) Scikit-learn的分类器算法-随机森林(Random Forest)


Machine Learning | (9) 回归算法-线性回归


Machine Learning | (10) 回归算法-岭回归


欠拟合与过拟合

机器学习中的泛化,泛化即是,模型学习到的概念在它处于学习的过程中时模型没有遇见过的样本时候的表现。在机器学习领域中,当我们讨论一个机器学习模型学习和泛化的好坏时,我们通常使用术语:过拟合和欠拟合。我们知道模型训练和测试的时候有两套数据,训练集和测试集。在对训练数据进行拟合时,需要照顾到每个点,而其中有一些噪点,当某个模型过度的学习训练数据中的细节和噪音,以至于模型在新的数据上表现很差,这样的话模型容易复杂,拟合程度较高,造成过拟合。而相反如果值描绘了一部分数据那么模型复杂度过于简单,欠拟合指的是模型在训练和预测时表现都不好的情况,称为欠拟合。


我们来看一下线性回归中拟合的几种情况图示:

image.png

image.png

image.png

image.png

image.png

image.png

解决过拟合的方法

在线性回归中,对于特征集过小的情况,容易造成欠拟合(underfitting),对于特征集过大的情况,容易造成过拟合(overfitting)。针对这两种情况有了更好的解决办法


欠拟合

欠拟合指的是模型在训练和预测时表现都不好的情况,欠拟合通常不被讨论,因为给定一个评估模型表现的指标的情况下,欠拟合很容易被发现。矫正方法是继续学习并且试着更换机器学习算法。


过拟合

对于过拟合,特征集合数目过多,我们需要做的是尽量不让回归系数数量变多,对拟合(损失函数)加以限制。


(1)当然解决过拟合的问题可以减少特征数,显然这只是权宜之计,因为特征意味着信息,放弃特征也就等同于丢弃信息,要知道,特征的获取往往也是艰苦卓绝的。


(2)引入了 正则化 概念。


直观上来看,如果我们想要解决上面回归中的过拟合问题,我们最好就要消除x_3x3和x_4x4的影响,也就是想让θ3,θ4都等于0,一个简单的方法就是我们对θ3,θ4进行惩罚,增加一个很大的系数,这样在优化的过程中就会使这两个参数为零。


目录
相关文章
|
8月前
|
机器学习/深度学习 算法
大模型开发:什么是过拟合和欠拟合?你如何防止它们?
机器学习中,过拟合和欠拟合影响模型泛化能力。过拟合是模型对训练数据过度学习,测试集表现差,可通过正则化、降低模型复杂度或增加训练数据来缓解。欠拟合则是模型未能捕捉数据趋势,解决方案包括增加模型复杂度、添加特征或调整参数。平衡两者需通过实验、交叉验证和超参数调优。
857 0
|
8月前
|
机器学习/深度学习 算法
【机器学习】正则化 Regularization 过拟合欠拟合
【1月更文挑战第27天】【机器学习】正则化 Regularization 过拟合欠拟合
|
机器学习/深度学习 算法
机器学习算法之欠拟合和过拟合
机器学习算法之欠拟合和过拟合
|
6月前
|
人工智能 Python
模型评估与选择:避免过拟合与欠拟合
【7月更文第18天】在人工智能的探险旅程中,打造一个既聪明又可靠的模型可不简单。就好比在茫茫人海中找寻那位“知心朋友”,我们需要确保这位“朋友”不仅能在训练时表现优异,还要能在新面孔面前一样游刃有余。这就引出了模型评估与选择的关键议题——如何避免过拟合和欠拟合,确保模型既不过于复杂也不过于简单。今天,我们就来一场轻松的“模型相亲会”,通过交叉验证、混淆矩阵、ROC曲线这些实用工具,帮你的模型找到最佳伴侣。
291 2
|
机器学习/深度学习 传感器 算法
【XGBoost回归预测】基于鲸鱼算法WOA优化XGBoost实现数据回归预测附matlab代码
【XGBoost回归预测】基于鲸鱼算法WOA优化XGBoost实现数据回归预测附matlab代码
|
8月前
|
数据可视化 数据挖掘 计算机视觉
R语言用贝叶斯线性回归、贝叶斯模型平均 (BMA)来预测工人工资
R语言用贝叶斯线性回归、贝叶斯模型平均 (BMA)来预测工人工资
|
机器学习/深度学习 算法
机器学习欠拟合和过拟合
机器学习欠拟合和过拟合
99 0
|
机器学习/深度学习 算法 数据挖掘
机器学习算法: Logistic 回归 详解
机器学习算法: Logistic 回归 详解
19927 1
机器学习算法: Logistic 回归 详解
|
机器学习/深度学习 数据采集 算法
基于随机森林实现特征选择降维及回归预测(Matlab代码实现)
基于随机森林实现特征选择降维及回归预测(Matlab代码实现)
418 0
|
机器学习/深度学习 数据采集 前端开发
机器学习--方差和偏差、Bagging、Boosting、Stacking
机器学习--方差和偏差、Bagging、Boosting、Stacking
469 0
机器学习--方差和偏差、Bagging、Boosting、Stacking