Nat. Light | 深度学习在全息和相干成像中的应用

本文涉及的产品
公网NAT网关,每月750个小时 15CU
简介: Nat. Light | 深度学习在全息和相干成像中的应用

image.png

研究背景


尽管全息相干成像显微镜存在着如无标记,无扫描3D成像等诸多优点,相对于其它的显微成像模式(如明场显微镜和荧光显微镜),全息显微成像仍旧存在一些问题,如复杂的相位重建迭代过程,噪音噪点,导致了它的使用范围并没有那么广泛。


近年来,深度学习领域的发展的取得了很大的进步,这对于全息成像模式来说是全新的机会。深度学习方法应用于全息成像模式上(如图1所示),不仅能规避很多相干成像系统存在的问题,同时还能充分利用其本身成像模式的优势。来自加州大学洛杉矶分校的Ozcan团队相信深度学习与全息技术的交叉研究将是全息成像和传感系统在生命科学、生物医学和工程领域的更广泛的传播和采用的关键。

image.png

图1-深度学习方法在相干成像上的应用


在本文中,作者主要回顾了几种深度学习在全息相干成像系统中已有的应用。


相位恢复和全息重建


相位恢复是全息成像过程中的一个关键过程,常规的恢复策略中已有多种光学和数值方法被提出用于求解相位信息。例如,获取样本在不同轴距、照明角度、波长和偏振状态下的测量值作为在使用重建算法时的物理约束来获得最终解。然而,由于要对同一个物体进行多次测量,这种方法只适用于准静态的物体,对于高速移动的物体并不适用,并且算法耗时巨大并需要对大量自定义参数进行调试以得到比较好的图像。


结合深度学习的相位恢复方法被证明能够在从单一全息图中完成相位恢复工作,且比常规相位恢复策略和算法更高效、鲁棒性更强。在预处理环节,为达到更好的效果,在输入网络进行重建之前,首先会使用解析的方法对全息图进行一个聚焦的处理然后将对焦图像输入到神经网络中生成相位重建图像,如图2b,d所示。

image.png

图2-基于深度学习方法的全息重建


深度神经网络相较于常规解析重建算法的优势在于它可有效减少噪音噪点,且相比于state-of-art的迭代全息重建策略算法能缩短4~30倍的时间,如图2b,c所示。目前,这种技术已经被用于无标记快速流体检测。


景深加强与自动聚焦


Wu, Y. C等人在其工作中证明了深度神经网络能够从单一的全息测量数据中同时的执行自动聚焦和相位恢复,生成处于不同轴向深度的样品图像,如图2c所示。这种神经网络使用随机成对的离焦全息图和对应的聚焦、已相位恢复的全息图训练而成。通过并行的执行不同深度的聚焦和相位恢复,能够大幅的减少对3维分布的样品点进行重建的时间,这对宽视场的全息成像应用非常有用,并且这种扩展的景深图像是无法通过常规的基于波传播的迭代全息恢复策略得到的。


例如,这种基于深度学习的重建方法被用于在大于20平方毫米的宽成像视场上实现高通量病毒检测。还被用于重建生物气溶胶图进行花粉和霉菌孢子的识别及分类。


分辨率及信噪比提升


深度学习应用到分辨率提升中,以成像系统有无透镜分为:


(1)在无透镜全息系统中,用于训练网络的高分辨率标签图像是通过使用同一样本的多张进行了亚像素偏移的图像合成,低分辨率图像则是使用了少量进行了亚像素偏移的图像合成。训练好的网络能将低分辨率图转化成对应的高分辨率图,从而减少全息图的测量次数,缩短图像重建时间,如图2e所示;


(2)在基于透镜的受衍射极限限制的全息系统中,用于训练网络的高分辨率标签图像通过使用放大倍率和数值孔径更大的目镜来获取(此时获得的视野相对变小)。训练好的网络在将低分辨率图像转化成对应的高分辨率图像时,提升了成像系统的总体空间带宽积,同时拥有更高的分辨率和更广的视野。


在提升信噪比(SNR)方面,神经网络用高信噪比图像及其对应的由计算模拟得出的低信噪比图像来训练,然后利用训练好的网络对实验获得的图像数据进行散斑噪声抑制处理,如图2d所示。


明场全息成像


常规策略重建的全息图往往由于其图像对比度和轴向切片能力的不足而陷入性能瓶颈,其不仅是受到孪生像、自干涉及噪斑的影响,且也有受到由于时空间相干性过大而导致的样本离焦特征的影响。

image.png

图3-基于深度学习方法的明场全息术


为了解决其中的图像对比度问题,研究者提出使用神经网络将全息图转变成常规明场显微图。训练集由从同一张全息图计算得到的不同深度的复值图与相应深度的明场显微镜图像对组成。训练完成后,可以实现仅用一张全息图,不需要任何机械的全局轴向扫描操作,来得到样品不同深度的明场图像。这种技术集合了全息显微镜和明场显微镜的优点,如图3所示。


数据驱动的明场全息和跨模态变化方法能进一步的促成下一代高通量的全息体成像系统的出现,通过简单的硬件设备就能拥有更快的成像速度,更高的对比度以及3维切片能力。


用跨模态变化给样本的全息图染色


小提示:这部分内容可参见本公众号的历史文章nature | 基于深度学习方法的虚拟组织染色。


未经染色的生物标本,如细胞及其他一些细薄组织切片,在标准的明场显微镜下只能呈现出很低的对比度,以至于得不到有实际能用于病理诊断的图像。为了能产生高对比度的图像,一直以来,生物化学染色技术都被认为是病理学上得到病理诊断图像的标准方法。然而该技术却有需要在染色过程中使用大量化学试剂,耗时严重,对操作人员要求高等弊端。


基于深度学习的虚拟组织染色方法通过跨模态变化将使用全息显微镜下得到的病理学切片的定量相位图转换成与经过生物化学染色后呈现在明场显微镜下的图相当的虚拟染色图像,如图4所示。

image.png

图4-基于深度学习方法的虚拟组织染色

散射介质成像与衍射层析成像

深度学习在相干成像系统上的应用不局限于基于单次散射的全息投影技术,使用精确标记数据集,深度学习同样可以应用于多次散射与经由散射介质后的成像过程。

image.png

图5-通过光散射器成像

例如,神经网络从相干光通过光散射器后的光信号中提取目标图像,如图5所示;Borhani等人在其工作中提出神经网络可以从传输距离达1km的多模光纤后端获得的散斑图中重建并识别出手写数字,如图6所示。

image.png

图6-通过多模光纤成像

深度学习也被应用到光学衍射层析成像中,Kamilov等人在其研究工作中证明了一个训练好的全卷积神经网络能够由多张衍射层析图得到物体的3D折射率分布,如图7所示。Goy, A 等实现了仅通过少量的角度扫描衍射层析图完成3D折射率重建。

image.png

图7-衍射层析重建

Choi, G等成功的利用对抗生成网络GAN来生成减少了动态散斑噪声的三维重建图,如图8所示。在这种GAN网络中,训练过程中使用的数据集可以是未配对的数据。

image.png

图8-散斑噪声抑制


总结


当前世界正在经历全息术和相干成像领域的真正复兴,这得益于来自神经网络和数据驱动学习方法的强大统计工具的新浪潮。显微领域的进步使得深度学习框架能获取到更多精确的用于训练深度神经网络的图像数据,这种基于深度学习的全息和相干成像模式能高效的得到高分辨率和高通量的图像,给硬件资源有限的便携式显微设备带来更多可能。。


Ozcan团队相信,这只是这一领域将经历的一系列变革性进步的开始,这不仅将从根本上改变成像仪器及其工作方式,而且还将开辟大量的新应用,这是当今成像系统所无法实现的。

参考资料


Rivenson Y., et al. Deep learning in holography and coherent imaging. Light.: Sci. Appl. (2019) 8:85.


审稿人注


Holography偏向于是一种成像方式,Coherent 主要指使用激光成像。


Phase Retrieval: 光是一个复数量,, 其中A是Amplitude(幅度),一般常规显微镜看到的图都是幅度图。指相位,是一个跟物体折射率与物体高度相关的量,所以能够反映物体的内部结构。一般相机只能接收到幅度值,Phase Retrieval的过程就是从相机接收到的幅度值里面提取值的过程。


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
基于阿里云,构建一个企业web应用上云经典架构,让IT从业者体验企业级架构的实战训练。
目录
相关文章
|
2天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第13天】 随着计算机视觉和人工智能技术的飞速发展,深度学习已成为推动图像识别领域进步的核心动力。本文将探讨深度学习技术在图像识别中的应用,并分析其面临的主要挑战。我们将从卷积神经网络(CNN)的基础出发,探索其在图像分类、目标检测和语义分割等方面的应用实例,并针对数据偏差、模型泛化能力、计算资源需求等关键问题展开讨论。通过案例分析和性能比较,我们旨在为读者提供一个关于深度学习在图像识别中应用的全面视角,同时指出未来的研究方向和技术趋势。
|
1天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第16天】 随着科技的不断发展,深度学习技术在图像识别领域取得了显著的成果。本文将探讨深度学习在图像识别中的应用,以及在实际应用中所面临的挑战。我们将介绍卷积神经网络(CNN)在图像识别中的关键作用,以及如何通过优化网络结构和训练策略来提高识别准确率。此外,我们还将讨论在大规模数据集上进行训练时可能遇到的问题,以及如何利用迁移学习和数据增强等技术来解决这些问题。
|
1天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第16天】 随着人工智能技术的飞速发展,深度学习在图像识别领域取得了显著的成果。本文将探讨深度学习在图像识别中的应用,分析其优势和面临的挑战。我们将重点关注卷积神经网络(CNN)在图像分类、目标检测和语义分割等方面的应用,并讨论数据不平衡、过拟合和计算资源等挑战。最后,我们将展望深度学习在图像识别领域的未来发展趋势。
|
1天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第16天】 随着人工智能技术的突飞猛进,特别是深度学习在图像识别领域的应用,已成为推动自动驾驶技术发展的关键因素。本文旨在探讨基于深度学习的图像识别技术如何被集成到自动驾驶系统中,提高车辆的环境感知能力,确保行车安全。我们将分析卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型在处理实时交通数据中的优势,同时探讨这些技术面临的挑战和潜在的改进方向。通过实验结果验证,基于深度学习的图像识别系统能够有效提升自动驾驶汽车的导航精度与决策效率,为未来智能交通系统的实现奠定基础。
14 4
|
1天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用及挑战
【5月更文挑战第16天】 随着计算机视觉技术的飞速发展,深度学习已经成为图像识别领域的核心技术。本文将探讨深度学习在图像识别中的应用,分析其优势和面临的挑战。首先,我们将介绍深度学习的基本原理和关键技术,然后通过实例分析其在图像识别领域的应用,最后探讨当前面临的主要挑战和未来发展趋势。
|
1天前
|
机器学习/深度学习 监控 自动驾驶
探索深度学习在图像识别中的创新应用
【5月更文挑战第16天】 随着人工智能技术的飞速发展,深度学习已成为推进图像识别领域前沿的核心技术。本文旨在深入剖析深度学习模型如何革新传统的图像处理流程,并探讨其在各个应用场景中展现出的独特优势与潜在挑战。我们将重点讨论卷积神经网络(CNN)的架构优化、数据增强技术、迁移学习策略以及对抗性网络的兴起等方面,以期为未来图像识别技术的发展提供参考和启示。
|
1天前
|
机器学习/深度学习 边缘计算 算法
深度学习在图像识别中的应用与挑战
【5月更文挑战第15天】 随着人工智能技术的飞速发展,深度学习已经成为了计算机视觉领域的核心动力。本文将探讨深度学习在图像识别任务中的应用,分析其面临的主要挑战,并提出可能的解决方案。我们将回顾卷积神经网络(CNN)的基础结构,并讨论数据增强、迁移学习、模型压缩等先进技术如何提升图像识别系统的性能。此外,我们还将关注对抗性攻击、数据集偏差和计算资源限制等问题对深度学习模型的影响。
|
2天前
|
机器学习/深度学习 存储 人工智能
深度学习在图像识别中的应用与挑战
【5月更文挑战第15天】 随着人工智能技术的飞速发展,深度学习已成为图像识别领域的核心技术。本文将探讨深度学习在图像识别中的应用,以及在实际应用中所面临的挑战。我们将介绍卷积神经网络(CNN)的基本原理,以及如何利用深度学习模型进行图像分类、目标检测和语义分割等任务。此外,我们还将讨论在训练和部署深度学习模型时可能遇到的一些问题,如过拟合、计算资源需求和数据隐私等。
|
2天前
|
机器学习/深度学习 自动驾驶 算法
利用深度学习优化图像识别在自动驾驶系统中的应用
【5月更文挑战第15天】 随着自动驾驶技术的不断进步,图像识别作为其核心技术之一,对准确性和实时性的要求日益提高。本文旨在探讨如何通过深度学习算法优化图像识别流程,进而提升自动驾驶系统的整体性能。文中首先回顾了当前自动驾驶领域中图像识别面临的挑战,接着介绍了几种先进的深度学习模型及其在图像处理中的应用,最后提出了一个结合这些模型的优化框架,并对其潜在的改进效果进行了分析。
|
2天前
|
机器学习/深度学习 传感器 人工智能
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第15天】随着人工智能技术的飞速发展,尤其是深度学习在图像处理领域的突破性进展,自动驾驶系统得以实现更加精准和高效的环境感知。本文章深入探讨了深度学习技术在自动驾驶车辆图像识别中的运用,分析了卷积神经网络(CNN)等模型在车辆、行人以及交通标志识别上的优势与挑战。同时,本文还针对当前自动驾驶系统中存在的数据偏差、实时处理能力及安全性问题提出了潜在的解决策略,并展望了未来发展趋势。