腾讯自研万亿级消息中间件TubeMQ捐赠给Apache!(下)

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
注册配置 MSE Nacos/ZooKeeper,118元/月
性能测试 PTS,5000VUM额度
简介: 腾讯自研万亿级消息中间件TubeMQ捐赠给Apache!(下)

三、TubeMQ的存储模式与管控措施

MQ里最核心的是它的存储模式,如下图所示,右边的存储方案列表是一位叫陈大白的知乎用户给我们提供的,左边是TubeMQ的存储方案。

image.png

TubeMQ采用的是按Topic组织内存+文件的存储实例方案来实现的,数据先写到主内存,主内存写满之后切为备份内存,数据异步从备份内存刷到文件完成数据写入。它通过消费的偏移度来决定它是由主内存还是备内存还是文件消费数据,这样的话可以减轻系统的负担,提高它的存储量。

大家从右边的存储图上面可以看到:Kafka、RocketMQ和京东2019年发布JMQ,其实相差并不大。但是需要注意的是,每一种存储模式在不同的资源要求下,它的性能指标和相应的量级是不一样的。

因为我们做的是有损服务,有损的服务是怎么回事呢?就是我们在机器断电、没有存储或者没有刷盘的情况下,数据就会丢失,在磁盘RAID10都无法恢复的磁盘故障情况下数据也会丢失。除了这两种情况,其他的情况都不会丢。

因为上述两类故障随时可能发生,因而TubeMQ其实不适合用做持久的反复消费、而又需要前后数据完全一致的场景。那么,我们为什么要这么做呢?我们是不是做不到多副本呢?其实也不是的。

问题就在于成本方面的考量。我们这样做,如果横向作比较,大家知道我们能够省多少台机器吗?换算成金钱的话能省多少吗?

在这里给大家提供一个数据:2019年11月8日,开源Kafka项目的LinkIn公司发表了一篇文章,他们7万多条数据用了4000台机器,这个信息大家网上可以查到。另一个是我们国内做大数据与应用相关场景公司的例子,采用原生Kafka做大数据接入,在2018年底也达到了7、8万亿的数据量,花了1500台万兆机。

说回来,我们这种模式下需要多少台机器呢?我们现在达到35万亿的数据量用的也是1500台机器,在相同的前提下,我们对比外部MQ,使用的机器数量只有它们的1/4、1/5。换算成人民币的话是多少?一台商用机大概是10万左右,仅仅机器成本我们就可以节约到几个亿,这就是为什么要采用这个方案的原因。

跟Kafka异步节点复制方案相比,我们只需要1/4左右的机器量。当然,即便是用单复本,我们的性能也会比Kafka强很多,可以节约不少机器,相关数据可以看我们的测试报告。

image.png

TubeMQ所有的管控逻辑包括所有的API接口都是围绕着它的存储来做的,包括它的Topic的配置和流控的处理和数据的查询、API的库存等等。下图所示的是TubeMQ最核心的API接口定义,主要分为4个章节。如果只是使用的话,直接通过管控台操控就可以了,但如果你要精细化地去调控系统,就需要去了解API的定义了。

image.png

TubeMQ的管控模块Master,是基于BDB嵌入式数据库进行集群的Broker节点管理。各个Broker配置的Topic信息的数据存储,只要在标红的操作栏里操作,就会有一个状态告知操作者目前处于什么样的过程,是基于执行操作还是只读只写或者是可读写的情况。还可以通过这个页面查询。本系统在Windows上面就可以运行起来,欢迎大家去试用。

TubeMQ的认证授权设计和传统的也不太一样,因为我们把TubeMQ的认证机做了重新的定义,具体可见下图。

四、为什么选择开源?

第一,基于公司的开源政策要求:对内开源协同,对外形成技术影响力,所以我们选择了开源。第二,从我们掌握的信息来看,我们认为在这一领域开源TubeMQ,是可以对有需要的同学们产生实际价值的。第三,我们觉得开源是在打破壁垒。

在世界不同的角落,很多人都在研究这一问题,就像平行宇宙一样,大家都在各自的宇宙里面去研究和分析,相互之间没有太多的交流,我们相信肯定有人比我们做得更好,有值得我们学习的地方,所以我们把它开源出来,形成一个大家都了解、可以相互学习的状态,这样对自己也是一种促进。基于以上这三点,我们最终选择了开源。

网络异常,图片无法展示
|

在已经开源情况下为什么还要去贡献过给Apache呢?其实我也理解有很多做开发的同学不敢去用一些开源项目,因为有很多公司开源了一个项目,用着用着结果发现没有人维护了。

为了解决这个问题,我们希望把它捐献给一个中立的基金会,通过它已经成文的标准化流程,使项目成为一个大家可以接受的成熟项目,包括它的文档化和多种接入的情况。即便原创团队最后不接手这个项目了,后面也有人去接手它,使这个项目能够持续向前改进。

所以我们把它捐献给了基金会。为什么选择Apache呢?因为我们是专注于大数据场景的MQ,而Apache是基于大数据这个生态最为出名的社区,而我们也同样也受惠于这个生态,所以理所当然就想回馈社区,将项目捐献给Apache。前段时间TubeMQ已经成为了Apache的孵化项目。

网络异常,图片无法展示
|

五、TubeMQ的后续发展探讨

2020年上半年我们在开源的协同推广下,内部接入的业务数据将会越来越多,日均接入量相信很快就会过40万亿。

我们的机器也将会由以前的TS60升级成BX2,它将会带来什么样的变化呢?以往的机器是CPU 99%,磁盘IO是30~40%,根据最新的测试数据,在BX2上面变为CPU 30~40%,磁盘IO 99%。由此可见,我们需要把它磁盘的IO尽可能地降下来,或者选择其他更合适的机器,这是需要去研究的。

另外,因为我们已经开源了,后续如何培养社区也是一个比较关键的点。目前来看,我们会基于协作的机制将它开源,无论是公司内还是公司外的同学,一起贡献来把这个项目做大,我们会在自己擅长的领域把这个东西继续夯实,大家可以根据自己的需要去使用我们的项目。

同时大家在使用的过程中如果能发现有些不完善的地方,也希望能通过社区贡献出来,大家一起努力把这个项目做好。

网络异常,图片无法展示
|

其实我们不仅仅只有MQ,我们同样在做的还有汇聚层和采集层,在此之上还有管理层。我们的希望是把MQ这一块做稳定以后,再将整体开源出来。我们会允许这一套系统接纳不同的MQ,根据MQ不同的特点提供给外部业务使用,但对外部业务又是无感知的。


网络异常,图片无法展示
|

六、Q&A

Q:张老师,你刚才做了TubeMQ和Kafka的对比,还介绍了TubeMQ内部的存储结构,但是我发现它的内部存储结构和Kafka的存储没有差别,你们只多了一个备份缓存,我不知道为什么你们只是一个备份问题就可以把Kafka甩这么远?

A:Kafka是基于Partition的结构,一个Partition就会有一个文件块,而TubeMQ是基于Topic的,Partition已经是一个逻辑的概念。第二个不同是我们的内存是主备模式,你刚才已经提到了,为什么多了一个内存块就会快一些?写内存更快基本上是共识,然后把一块盘写满,写满了的切为备块异步去刷到文件,然后换块内存继续写,这样主备切换的话读写冲突就少了很多,整体就会更快一些。

我们为什么改为这样的存储结构呢?像Kafka,1000×10的时候就已经变成了随机读写,跑起来数据指标不是很好,而且也不稳定。RocketMQ是所有数据存储在一个文件,每一个Partition又构造了一个文件,这样子就带来一个问题:数据文件会有写入瓶颈,遇到流量增长时整个系统指标就上不来了。

JMQ是按Topic定义数据文件,但每个Partition定义新的文件,它比RocketMQ更宽泛一点,它数据不会集中到一个文件,它是按照Topic来的,解决了RokcetMQ的一些问题。

TubeMQ是怎样呢?TubeMQ是一个Topic一个数据文件,不同的Topic有不同的文件,我们没有Partition。我们都是按Topic来定义存储单元的,一个数据文件 + 一个索引文件。大家可以去分析一下,它们是各有特点,不同的场景下的表现特征是不一样的,包括你的硬件场景,其实还是有很大差异的。

目录
相关文章
|
6月前
|
SQL Apache 调度
Apache Hudi在腾讯的落地与应用
Apache Hudi在腾讯的落地与应用
142 3
|
1月前
|
存储 自然语言处理 BI
|
6月前
|
存储 消息中间件 Java
新一代消息中间件—Apache Pulsar
新一代消息中间件—Apache Pulsar
466 0
新一代消息中间件—Apache Pulsar
|
6月前
|
关系型数据库 Apache DataX
BDCC - 数据集成领域的主流中间件_ Apache SeaTunnel vs Flink CDC vs DataX vs Apache Sqoop vs Apache Flume
BDCC - 数据集成领域的主流中间件_ Apache SeaTunnel vs Flink CDC vs DataX vs Apache Sqoop vs Apache Flume
615 0
|
6月前
|
SQL 存储 数据挖掘
带你读《Apache Doris 案例集》——05 当 Apache Doris 遇上大模型:探秘腾讯音乐如何 基于大模型+ OLAP 构建智能数据服务平台(1)
带你读《Apache Doris 案例集》——05 当 Apache Doris 遇上大模型:探秘腾讯音乐如何 基于大模型+ OLAP 构建智能数据服务平台(1)
208 0
|
6月前
|
存储 运维 OLAP
带你读《Apache Doris 案例集》——05 当 Apache Doris 遇上大模型:探秘腾讯音乐如何 基于大模型+ OLAP 构建智能数据服务平台(2)
带你读《Apache Doris 案例集》——05 当 Apache Doris 遇上大模型:探秘腾讯音乐如何 基于大模型+ OLAP 构建智能数据服务平台(2)
350 0
|
6月前
|
存储 SQL OLAP
带你读《Apache Doris 案例集》——05 当 Apache Doris 遇上大模型:探秘腾讯音乐如何 基于大模型+ OLAP 构建智能数据服务平台(3)
带你读《Apache Doris 案例集》——05 当 Apache Doris 遇上大模型:探秘腾讯音乐如何 基于大模型+ OLAP 构建智能数据服务平台(3)
184 0
腾讯音乐基于阿里云数据库 SelectDB 版内核 Apache Doris + 大模型构建全新智能数据服务平台
Apache Doris 助力腾讯音乐构建查询高效、实时统一分析的 OLAP 引擎,为用户提供个性化、实时化、灵活化的智能数据服务平台。
腾讯音乐基于阿里云数据库 SelectDB 版内核 Apache Doris + 大模型构建全新智能数据服务平台
|
存储 消息中间件 设计模式
新一代消息中间件—Apache Pulsar
新一代消息中间件—Apache Pulsar
|
存储 SQL 分布式计算
官宣:计算中间件 Apache Linkis 正式毕业成为 Apache 顶级项目
官宣:计算中间件 Apache Linkis 正式毕业成为 Apache 顶级项目
187 4

推荐镜像

更多