【问答集锦】人工智能/机器学习技术在电商场景下的应用

简介: 近年来阿里不断运用深度学习、强化学习等人工智能领域的相关知识优化自身电商平台的搜索引擎和推荐系统,让其从冷冰冰的系统不断成长为越来越懂用户的智能购物助手。 日前,《尽在双11》人工智能部分执笔人&阿里技术专家 乐田 与 仁重 就 “人工智能/机器学习技术在电商场景下的应用” 问题在OSCHINA与大家开展了问答活动。

  近年来阿里不断运用深度学习、强化学习等人工智能领域的相关知识优化自身电商平台的搜索引擎和推荐系统,让其从冷冰冰的系统不断成长为越来越懂用户的智能购物助手。
  日前,《尽在双11》人工智能部分执笔人&阿里技术专家 乐田 与 仁重 就 “人工智能/机器学习技术在电商场景下的应用” 问题在OSCHINA与大家开展了问答活动。
  本文整理了两位老师在开源中国高手问答中的精彩问答。

1 . 机器学习在电商方面除了广告推荐之类的方面外,还有其他的应用么?谢谢,还有学习这方面需要哪些知识

  机器学习在电商领域的应用从外部产品来看主要涉及3个:搜索、广告、推荐。从内部来看,从商品选品、流量生成机制、物流优化、物流机器人、智能客服、互联网信用贷款等方面都会用到机器学习。 学习机器学习有之前传统的统计学习例如《The Elements of Statistical Learning》,《支持向量机导论》、周老师的西瓜书等经典教材;现在最新的Deep Learning也出书了。

2 . 机器学习在阿里电商场景下的最常用算法有哪些?阿里对哪些算法做了有针对性的优化和改进呢?阿里目前推荐系统从用户访问到根据访问记录进行推荐的实时性是多久?

  LR、GBDT、RNN有不少人在用了,还有首创的MLR、ItemCF。。针对性的优化和改进主要是在适配阿里的计算平台和大数据方面,这方面例子比较多,如对ItemCF 的Swing算法。

3 . 现阶段的人工智能离传统的应用程序员还是很远,请问有什么办法能够快速普及吗?

  是技术发展过程中本身的分化导致的,技术发展就是要普惠更多的人,让更多的人参与门槛持续降低,无论怎么低,通晓基本原理和基本的训练是必要的,跟学编程差不多。

4 . 深度学习算法在实际应用中是否比较曲折,对于数据的抽象工作特别难,中小型公司是否更加适合随机森林这种非深度算法?

  选择团队能驾驭的算法,对于新方法可以培养团队的驾驭能力。

5 . Tensorflow 这个框架主要应用在哪些方面场景?

  用户和商品的Embedding、Wide&Deep、GANs等。

6 . 阿里有计划使用Tensorflow加入推荐系统里吗?

  有较多的场景在用Tensorflow了。阿里推荐系统的逻辑架构在《尽在双11》一书上有介绍,具体的基础设施可能阿里特色较多一些。

7 . 目前推荐系统多数是使用标签模式来给用户推荐吗?怎么判断用户符合系统推荐的商品?除了机器推荐,后期会有人为控制去跟进吗?

  部分推荐场景如“微淘”,是使用了标签进行推荐的。使用标签推荐的前提是这种推荐对象更适合标签的方式来描述。推荐体验分析相对搜索结果分析是个全新的问题,需要考虑个性化,还有选择评估样本的代表性。

8 . 让机器自动学习怎样去推荐,最后会不会连开发者都不知道系统是怎样推荐的?如果这时候发现系统推荐的商品有问题,怎样确定问题出在哪里?怎样调整系统的算法?

  这涉及到推荐系统的自省(reflection)能力,从实现上说,自省能力是推荐系统正向过程的逆过程,由于涉及算法比较复杂,逆向过程只能在部分上反映推荐过程是怎样的,一定程度上可以debug推荐结果的问题。

9 . 统计用户行为需要搜集并保留所有用户的所有行为,除了购买行为外还包括浏览行为、关注行为、加入购物车行为等,请问采用单元粒度的分布式架构是否更为合理?

  单元化是在服务端(在线服务)进行的,对用户数据汇总分析不是单元化的,而是把所有单元的数据汇总的结果。

10 . 外网的数据,如何整合到推荐系统里,提高推荐的正确性?

  外网的数据必须要能描述用户或推荐对象才能使用,而且考虑到站内的数据的完整程度,外网的数据补充进来价值会不同。

11 . 小公司要做实时推荐有什么框架可以使用

  选择开源的工具和平台,例如Spark、Storm等,结合HBase计算端存储和LevelDB、Redis等在线端存储应该是个可行的方案

12 . 阿里的推荐算法用的在线的多还是离线的多?因为可供学习的数据很多,每次从头来量应该很大。

  部分场景是纯在线的,部分场景是在线离线结合的,还有一部分是纯离线的。离线处理数据重新计算是个问题,因此离线也不太可能处理很长时间的数据。

13 . 现在很多推荐算法是不是有问题?总是推荐我买过的东西,并且从品牌层次和商家都不匹配。

  我们针对用户已经购买的商品进行了部分过滤,商品类目也是个比较复杂的事情,有时候看起来是一个品类的商品,实际上是属于不同的类目,比如运动鞋和男鞋就是不同的类目。这个问题已经比较久了,只能逐步解决。

14 . 算法程序建模之后,怎么验证代码的准确性? 程序员之间互测? 算法调优有啥思路?

  算法一般都会隐藏一些“bug”,只不过这些bug对结果的影响大小的问题,所以坊间也有通过修复bug来提高效果的。算法建模之后通过test数据集进行验证。

15 . 像淘宝每天每周都有很多新加入的商品,请问算法团队是如何做的?新加入的商品应该如何给排序值,确定值大小?

  冷启动的商品会分配极小的流量进行探索性投放。

16 . 目前可以使用算法编写的语言很多,python吗? 贵团队是如何决策的?

  底层的算法和工程系统使用C/C++开发,应用层适应多变的需求,使用Java开发,Python和Java的功能类似,在运行效率和库的完备度方面弱一些,也有使用。
  最后,安利一下这本著作——《尽在双11》。本书以双11为着眼点,从技术的角度,展示了阿里巴巴的演进、变革与发展,系统地阐述了阿里巴巴重要阶段的技术进步历程。

                   图片描述

相关文章
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
2天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
90 59
|
1天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
20 3
|
7天前
|
机器学习/深度学习 人工智能 供应链
AI技术在医疗领域的应用与未来展望###
本文深入探讨了人工智能(AI)技术在医疗领域的多种应用及其带来的革命性变化,从疾病诊断、治疗方案优化到患者管理等方面进行了详细阐述。通过具体案例和数据分析,展示了AI如何提高医疗服务效率、降低成本并改善患者体验。同时,文章也讨论了AI技术在医疗领域面临的挑战和未来发展趋势,为行业从业者和研究人员提供参考。 ###
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
32 6
|
7天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用与挑战
【10月更文挑战第21天】 本文探讨了人工智能(AI)在医疗领域的多种应用,包括疾病诊断、治疗方案推荐、药物研发和患者管理等。通过分析这些应用案例,我们可以看到AI技术如何提高医疗服务的效率和准确性。然而,AI在医疗领域的广泛应用也面临诸多挑战,如数据隐私保护、算法透明度和伦理问题。本文旨在为读者提供一个全面的视角,了解AI技术在医疗领域的潜力和面临的困难。
|
8天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
8天前
|
人工智能 自然语言处理 监控
AI技术在文本情感分析中的应用
【10月更文挑战第22天】本文将探讨人工智能(AI)如何改变我们对文本情感分析的理解和应用。我们将通过实际的代码示例,深入了解AI如何帮助我们识别和理解文本中的情感。无论你是AI新手还是有经验的开发者,这篇文章都将为你提供有价值的信息。让我们一起探索AI的奇妙世界吧!
23 3
|
8天前
|
人工智能 边缘计算 监控
边缘AI计算技术应用-实训解决方案
《边缘AI计算技术应用-实训解决方案》提供完整的实训体系,面向高校和科研机构的AI人才培养需求。方案包括云原生AI平台、百度AIBOX边缘计算硬件,以及8门计算机视觉实训课程与2门大模型课程。AI平台支持大规模分布式训练、超参数搜索、标注及自动化数据管理等功能,显著提升AI训练与推理效率。硬件涵盖多规格AIBOX服务器,支持多种推理算法及灵活部署。课程涵盖从计算机视觉基础到大模型微调的完整路径,通过真实商业项目实操,帮助学员掌握前沿AI技术和产业应用。
26 2
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
开源版GPT-4o来了,AI大神Karpathy盛赞!67页技术报告全公开
【10月更文挑战第20天】近日,开源版GPT-4o的发布成为AI领域的焦点。作为GPT系列的最新成员,GPT-4o在性能和多模态数据处理方面实现了显著提升,得到了知名AI专家Andrej Karpathy的高度评价。该模型的开源特性将进一步促进AI研究的进展。
20 3