通过R让你的复杂网络图更具艺术感

简介:

一、引子:

前段时间有幸听到了张溪梦老师的公开演讲,他归纳了一名数据科学家应该具备的能力:创新能力、勇气、科学、技术、商业、人文、艺术。从经常听到的数据科学家的三种基本能力即分析能力、专业能力、IT能力外延到了人文、艺术,呵呵,大家顿时产生了一种高尚大的自豪感。

回来后团队的美女分析师就找到了我,对话如下:“leader,我有些想法!”“汗,难不成要跳槽…”我内心有些不安,“说吧~”我故作镇定。“我觉得可以把报告中的这个图(见图一)美化下”她指了指电脑上的报告。“去吧,去吧,我支持你,弄好了咱们再讨论”我心安了……


图一 两种应用使用人数的示意图

两天后,她自信满满的回来找我了,带来了下面这张图:


图二 改进后的两种应用使用人数的示意图

“我觉得可以尝试使用社交关系图来表示应用人数和之间的交叠关系,这样更加美观,特别是当应用较多的时候。”她一语中的道。“嗯嗯”,我一边应付她,一边在脑子里飞快的回忆社交关系图的特点,“在反映大量人群或事物之间的关系时,社交网络图可以清晰的展示’群体’的内含和外延。例如,群体的规模、核心、与其他群体的交叠情况。“我同意了她的想法,开始试验!


二、数据的准备:

1、首先,编造一份原始数据,文件名是app_sub.txt,数据格式如下:

编号,应用名称

11111,滴滴打车

99999,美图秀秀

99999,微信

99999,优酷

22222,淘宝

22222,滴滴打车

22222,大众点评

……

代表有2980名用户使用APP的情况,各位在自行练习时可以采用随机函数来生成号码清单。

运行环境说明:R 3.1.1

2.利用R读入数据。

read.table("app_sub.txt",essay-header= FALSE,sep = ",",colClasses =c("character","character"))->g

3.去除NA值

g1<-na.omit(g)


三、开始绘制简单的社交关系图:

1.简单的社交网络

library(igraph) #加载igraph包

x<-par(bg="black") #设置背景颜色为黑色

g2 = graph.data.frame(d = g1,directed = F); #数据格式转换

V(g2) #查看顶点

E(g2) #查看边

2.不对顶点和边的格式做调整,使用layout.fruchterman.reingold方式呈现图形。

plot(g2,layout=layout.fruchterman.reingold,vertex.label=NA) #显示网络图


图二 初步的网络图

上面的社交网络图中大部分顶点重叠在一起,根本不能看出社交网络中顶点之间的连接关系。下面需要对顶点和边的格式做调整。

3.对顶点和边的格式做调整

设置vertex.size来调整顶点大小, 设置vertex.color来改变显示颜色。

plot(g2,layout=layout.fruchterman.reingold,vertex.size=2, vertex.color="red",edge.arrow.size=0.05,vertex.label=NA) #设置vertex大小和颜色后显示网络图


图二 改进后的网络图

上图中顶点明显归属于某个或某几个社区。但所有的点都是同一个颜色,不能直观呈现出社区的概念。


四、划分网络图中的社区:

1.利用igraph自带的社区发现函数实现社区划分Igraph包中社区分类函数有以下几种:

fastgreedy.community

spinglass.community

edge.betweenness.community

leading.eigenvector.community

walktrap.community

label.propagation.community

clique.community

multilevel.community

不同的分类算法,速度和适用社区网络大小都有所侧重。对于同一网络,采用什么样的分类算法需要实践后去人工判断是否符合预期。

下面利用只有两个社区网络的数据来验证walktrap.community和edge.betweenness.community分类结果的不同之处。

下图是walktrap算法,step=10的情况下得出的结果。原本的2个社区网络被分为66类。把两个大社区分成了一类,把两大社区重叠的部分分成了很多类。显然这不是我们所希望看到的分类结果。可见walktrap算法不太适合网络数量较小的情况。


图三 walktrap算法的呈现

下图是edge.betweenness算法的出的结果。社区网络被分成两类


图四 edge.betweenness算法算法的呈现

2.美化图形(以顶点分类)

利用walktrap.community进行社区划分,对不同的社区赋值不同的颜色。为了呈现更多的点和线的关系,我们采用了透明化的处理方式。

com = walktrap.community(g2, steps = 10)V(g2)$sg=com$membershipV(g2)$color = rainbow(max(V(g2)$sg),alpha=0.8)[V(g2)$sg]plot(g2,layout=layout.fruchterman.reingold, vertex.size=1,vertex.color=V(g2)$color, edge.width=0.4,edge.arrow.size=0.08,edge.color = rgb(1,1,1,0.4),vertex.frame.color=NA,margin= rep(0, 4),vertex.label=NA)


图五 透明化处理后的网络图


五、完成最终的效果图:

1.美化图形(以边线分类)

另一种呈现方式,是点的颜色不变,将不同社区的连线颜色分类。

E(g1)$color=V(g1)[name=ends(g1,E(g1))[,2]]$color #为edge的颜色赋值V(g1)[grep("1", V(g1)$name)]$color=rgb(1,1,1,0.8) #为vertex的颜色赋值plot(g1,layout=layout.fruchterman.reingold, vertex.size=V(g1)$size, vertex.color= V(g1)$color, edge.width=0.3,edge.color = E(g1)$color,vertex.frame.color=NA,margin= rep(0, 4),vertex.label=NA)


图六 最终效果图

通过上图可以看出本次实验数据中用户体量最大的APP分别是:微信、微博、淘宝、京东。社区交汇的点表示每两个APP之间的共有用户。例如,微信和微博的共有用户位于上图右上角橘黄色线条和黄色线条的交汇处。

社交网络图是近年来展示复杂网络的一种直观的方式。利用社区发现算法对复杂网络进行聚类,可以挖掘出复杂网络包含的深层意义。例如,发现公司组织架构的相关性,利用群体相似性进行“猜你喜欢”的推荐活动。

好了,我和美女分析师的故事讲完了,各位慢慢消化上面的内容,有问题欢迎随时提问,我去补中国美术史和基础绘画技巧。


原文发布时间为:2015-10-07

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
Web App开发 Windows
FFmpeg开发笔记(十五)详解MediaMTX的推拉流
MediaMTX是开源轻量级流媒体服务器,提供RTSP, RTMP, HLS, WebRTC和SRT服务。启动后,它在不同端口监听。通过FFmpeg的推拉流测试,证明了MediaMTX成功实现HLS流媒体转发,但HLS播放兼容性问题可能因缺少音频流导致。推流地址为rtsp://127.0.0.1:8554/stream,RTMP地址为rtmp://127.0.0.1:1935/stream,HLS播放地址为http://127.0.0.1:8888/stream(Chrome)和http://127.0.0.1:8888/stream/index.m3u8(其他播放器可能不支持)。
2929 2
FFmpeg开发笔记(十五)详解MediaMTX的推拉流
|
2天前
|
人工智能 JavaScript Linux
【Claude Code 全攻略】终端AI编程助手从入门到进阶(2026最新版)
Claude Code是Anthropic推出的终端原生AI编程助手,支持40+语言、200k超长上下文,无需切换IDE即可实现代码生成、调试、项目导航与自动化任务。本文详解其安装配置、四大核心功能及进阶技巧,助你全面提升开发效率,搭配GitHub Copilot使用更佳。
|
3天前
|
存储 人工智能 自然语言处理
OpenSpec技术规范+实例应用
OpenSpec 是面向 AI 智能体的轻量级规范驱动开发框架,通过“提案-审查-实施-归档”工作流,解决 AI 编程中的需求偏移与不可预测性问题。它以机器可读的规范为“单一真相源”,将模糊提示转化为可落地的工程实践,助力开发者高效构建稳定、可审计的生产级系统,实现从“凭感觉聊天”到“按规范开发”的跃迁。
673 11
|
8天前
|
存储 JavaScript 前端开发
JavaScript基础
本节讲解JavaScript基础核心知识:涵盖值类型与引用类型区别、typeof检测类型及局限性、===与==差异及应用场景、内置函数与对象、原型链五规则、属性查找机制、instanceof原理,以及this指向和箭头函数中this的绑定时机。重点突出类型判断、原型继承与this机制,助力深入理解JS面向对象机制。(238字)
|
7天前
|
云安全 人工智能 安全
阿里云2026云上安全健康体检正式开启
新年启程,来为云上环境做一次“深度体检”
1624 6
|
3天前
|
消息中间件 人工智能 Kubernetes
阿里云云原生应用平台岗位急招,加入我们,打造 AI 最强基础设施
云原生应用平台作为中国最大云计算公司的基石,现全面转向 AI,打造 AI 时代最强基础设施。寻找热爱技术、具备工程极致追求的架构师、极客与算法专家,共同重构计算、定义未来。杭州、北京、深圳、上海热招中,让我们一起在云端,重构 AI 的未来。
|
5天前
|
IDE 开发工具 C语言
【2026最新】VS2026下载安装使用保姆级教程(附安装包+图文步骤)
Visual Studio 2026是微软推出的最新Windows专属IDE,启动更快、内存占用更低,支持C++、Python等开发。推荐免费的Community版,安装简便,适合初学者与个人开发者使用。
711 11
|
8天前
|
缓存 算法 关系型数据库
深入浅出分布式 ID 生成方案:从原理到业界主流实现
本文深入探讨分布式ID的生成原理与主流解决方案,解析百度UidGenerator、滴滴TinyID及美团Leaf的核心设计,涵盖Snowflake算法、号段模式与双Buffer优化,助你掌握高并发下全局唯一ID的实现精髓。
376 160