NLP进阶,使用TextRNN和TextRNN_ATT实现文本分类

本文涉及的产品
简介: NLP进阶,使用TextRNN和TextRNN_ATT实现文本分类

TextRNN

TextRNN仅仅是将Word Embedding后,输入到双向LSTM中,然后对最后一位的输出输入到全连接层中,在对其进行softmax分类即可,模型如下图:


oo.png

代码:

class RNN(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim,
                 n_layers=2, bidirectional=True, dropout=0.2, pad_idx=0):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
        self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers,batch_first=True,
                           bidirectional=bidirectional)
        self.fc = nn.Linear(hidden_dim * 2, output_dim)
        # 这里hidden_dim乘以2是因为是双向,需要拼接两个方向,跟n_layers的层数无关。
        self.dropout = nn.Dropout(dropout)
    def forward(self, text):
        # text.shape=[seq_len, batch_size]
        embedded = self.dropout(self.embedding(text))
        # output: [batch,seq,2*hidden if bidirection else hidden]
        # hidden/cell: [bidirec * n_layers, batch, hidden]
        output, (hidden, cell) = self.rnn(embedded)
        # concat the final forward (hidden[-2,:,:]) and backward (hidden[-1,:,:]) hidden layers
        hidden = self.dropout(torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1))
        # hidden = [batch size, hid dim * num directions],
        return self.fc(hidden.squeeze(0))  # 在接一个全连接层,最终输出[batch size, output_dim]

TextRNN_ATT

在TextRNN的基础上加入注意力机制,代码:

class RNN_ATTs(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim,
                 n_layers=2, bidirectional=True, dropout=0.2, pad_idx=0, hidden_size2=64):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers,
                            bidirectional=bidirectional, batch_first=True, dropout=dropout)
        self.tanh1 = nn.Tanh()
        # self.u = nn.Parameter(torch.Tensor(config.hidden_size * 2, config.hidden_size * 2))
        self.w = nn.Parameter(torch.zeros(hidden_dim * 2))
        self.tanh2 = nn.Tanh()
        self.fc1 = nn.Linear(hidden_dim * 2, hidden_size2)
        self.fc = nn.Linear(hidden_size2, output_dim)
    def forward(self, x):
        emb = self.embedding(x)  # [batch_size, seq_len, embeding]=[128, 32, 300]
        H, _ = self.lstm(emb)  # [batch_size, seq_len, hidden_size * num_direction]=[128, 32, 256]
        M = self.tanh1(H)  # [128, 32, 256]
        # M = torch.tanh(torch.matmul(H, self.u))
        alpha = F.softmax(torch.matmul(M, self.w), dim=1).unsqueeze(-1)  # [128, 32, 1]
        out = H * alpha  # [128, 32, 256]
        out = torch.sum(out, 1)  # [128, 256]
        out = F.relu(out)
        out = self.fc1(out)
        out = self.fc(out)  # [128, 64]
        return out

数据集

数据集采用cnews数据集,包含三个文件,分别是cnews.train.txt,cnews.val.txt,cnews,test.txt。类别:体育, 娱乐, 家居, 房产, 教育, 时尚, 时政, 游戏, 科技, 财经,共10个类别。网盘地址:


链接:https://pan.baidu.com/s/1awlBYclO_mxntEgL_tUF0g

提取码:rtnv


构建词向量

第一步,读取预料,做分词。


思路:


1、创建默认方式的分词对象seg。


2、打开文件,按照行读取文章。


3、去掉收尾的空格,将label和文章分割开。


4、将分词后的文章放到src_data,label放入labels里。


5、返回结果。


我对代码做了注解,如下:

def read_corpus(file_path):
    """读取语料
    :param file_path:
    :param type:
    :return:
    """
    src_data = []
    labels = []
    seg = pkuseg.pkuseg() #使用默认分词方式。
    with codecs.open(file_path,'r',encoding='utf-8') as fout:
        for line in tqdm(fout.readlines(),desc='reading corpus'):
            if line is not None:
                # line.strip()的意思是去掉每句话句首句尾的空格
                # .split(‘\t’)的意思是根据'\t'把label和文章内容分开,label和内容是通过‘\t’隔开的。
                # \t表示空四个字符,也称缩进,相当于按一下Tab键
                pair = line.strip().split('\t')
                if len(pair) != 2:
                    print(pair)
                    continue
                src_data.append(seg.cut(pair[1]))# 对文章内容分词。
                labels.append(pair[0])
    return (src_data, labels) #返回文章内容的分词结果和labels

经过这个步骤得到了labels和分词后的文章。如下代码:


src_sents, labels = read_corpus('cnews/cnews.train.txt')

1

对labels做映射:


   labels = {label: idx for idx, label in enumerate(labels)}

1

得到labels对应的idx的字典,idx的值是最后一次插入label的值。


第二步 构建词向量


这一步主要用到vocab.py的from_corpus方法


思路:


1、创建vocab_entry对象。


2、对分词后的文章统计词频,生成一个词和词频构成的字典。


3、从字典中取出Top size - 2个元素。


4、获取元素的词。


5、执行add方法将词放入vocab_entry,生成词和id,id就是词对应的向量值。


代码如下:

    @staticmethod
    def from_corpus(corpus, size, min_feq=3):
        """从给定语料中创建VocabEntry"""
        vocab_entry = VocabEntry()
        # chain函数来自于itertools库,itertools库提供了非常有用的基于迭代对象的函数,而chain函数则是可以串联多个迭代对象来形成一个更大的迭代对象
        # *的作用:返回单个迭代器。
        # word_freq是个字典,key=词,value=词频
        word_freq = Counter(chain(*corpus))  # Counter 是实现的 dict 的一个子类,可以用来方便地计数,统计词频
        valid_words = word_freq.most_common(size - 2)  # most_common()函数用来实现Top n 功能,在这里选出Top size-2个词
        valid_words = [word for word, value in valid_words if value >= min_feq]  # 把符合要求的词找出来放到list里面。
        print('number of word types: {}, number of word types w/ frequency >= {}: {}'
              .format(len(word_freq), min_feq, len(valid_words)))
        for word in valid_words:  # 将词放进VocabEntry里面。
            vocab_entry.add(word)
        return vocab_entry

创建完成后将词向量保存到json文件中


vocab = Vocab.build(src_sents, labels, 50000, 3)

   print('generated vocabulary, source %d words' % (len(vocab.vocab)))

   vocab.save('./vocab.json')


1

2

3

4

训练

训练使用Train_RNN.py,先看分析main方法的参数。


参数

    parse = argparse.ArgumentParser()
    parse.add_argument("--train_data_dir", default='./cnews/cnews.train.txt', type=str, required=False)
    parse.add_argument("--dev_data_dir", default='./cnews/cnews.val.txt', type=str, required=False)
    parse.add_argument("--test_data_dir", default='./cnews/cnews.test.txt', type=str, required=False)
    parse.add_argument("--output_file", default='deep_model.log', type=str, required=False)
    parse.add_argument("--batch_size", default=4, type=int)
    parse.add_argument("--do_train", default=True, action="store_true", help="Whether to run training.")
    parse.add_argument("--do_test", default=True, action="store_true", help="Whether to run training.")
    parse.add_argument("--learnning_rate", default=5e-4, type=float)
    parse.add_argument("--num_epoch", default=50, type=int)
    parse.add_argument("--max_vocab_size", default=50000, type=int)
    parse.add_argument("--min_freq", default=2, type=int)
    parse.add_argument("--hidden_size", default=256, type=int)
    parse.add_argument("--embed_size", default=300, type=int)
    parse.add_argument("--dropout_rate", default=0.2, type=float)
    parse.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parse.add_argument("--GRAD_CLIP", default=1, type=float)
    parse.add_argument("--vocab_path", default='vocab.json', type=str)
目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
NLP比赛笔记(基于论文摘要的文本分类与关键词抽取挑战赛)
NLP比赛笔记(基于论文摘要的文本分类与关键词抽取挑战赛)
71 0
|
7月前
|
机器学习/深度学习 数据采集 人工智能
自然语言处理中的文本分类技术
自然语言处理(NLP)是人工智能领域的重要分支之一,而文本分类则是NLP中的关键任务之一。本文将介绍文本分类技术在NLP中的应用,并深入探讨其中的算法原理和实现方法。
84 0
|
9月前
|
机器学习/深度学习 JSON 缓存
Transformers自然语言处理第二章 文本分类Part 1
文本分类是自然语言处理中最常见的任务之一,它可用于各种应用,例如将客户反馈标记为不同的类别,或者根据语言分发工单。电子邮件程序的垃圾邮件过滤器很有可能正在使用文本分类来保护收件箱免受大量不需要的垃圾邮件的侵扰!
212 2
Transformers自然语言处理第二章 文本分类Part 1
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
构建自然语言处理应用:文本分类和情感分析的实现
大家好!在这篇博客文章中,我们将探讨如何构建自然语言处理(NLP)应用程序,并重点介绍文本分类和情感分析的实现。NLP是人工智能领域的一个重要分支,它涉及处理和理解人类语言的能力。文本分类和情感分析是NLP的两个常见任务,可以应用于许多实际场景,如社交媒体监测、舆情分析和用户评论分类。
160 0
|
机器学习/深度学习 数据采集 存储
自然语言处理 - 文本分类
文本分类是自然语言处理中常见的任务之一,涉及将文本分成预定义的类别
158 0
|
机器学习/深度学习 数据采集 自然语言处理
NLP知识图谱项目合集(信息抽取、文本分类、图神经网络、性能优化等)
NLP知识图谱项目合集(信息抽取、文本分类、图神经网络、性能优化等)
|
机器学习/深度学习 自然语言处理 测试技术
零基础入门NLP - 新闻文本分类 方案整理
零基础入门NLP - 新闻文本分类 方案整理
296 1
零基础入门NLP - 新闻文本分类 方案整理
|
机器学习/深度学习 自然语言处理
动手学深度学习(十二) NLP循环神经网络进阶(下)
动手学深度学习(十二) NLP循环神经网络进阶(下)
112 0
动手学深度学习(十二) NLP循环神经网络进阶(下)
|
机器学习/深度学习 自然语言处理
动手学深度学习(十二) NLP循环神经网络进阶(上)
动手学深度学习(十二) NLP循环神经网络进阶(上)
186 0
动手学深度学习(十二) NLP循环神经网络进阶(上)
|
机器学习/深度学习 存储 人工智能
斯坦福NLP课程 | 第2讲 - 词向量进阶
NLP课程第2讲内容覆盖ord2vec与词向量、算法优化基础、计数与共现矩阵、GloVe模型、词向量评估、word senses等。
1056 1
斯坦福NLP课程 | 第2讲 - 词向量进阶