ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)

简介: ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)

利用XGBoost算法对波士顿数据集回归预测


T1、ShuffleSplit+GSCV模型调参


输出XGBR_GSCV模型最佳得分、最优参数:0.8630,{'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 200}

XGBR_Shuffle_GSCV time: 256.7015066994206

XGBoost Score value: 0.8536645272887292

XGBoost R2    value: 0.8536645272887292

XGBoost MAE   value: 2.1987844654894246

XGBoost RMSE  value: 3.368537070469827


0.588111 (0.039989) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 50}

0.745248 (0.039715) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 100}

0.780673 (0.041418) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 150}

0.794564 (0.045098) with: {'learning_rate': 0.03, 'max_depth': 1, 'n_estimators': 200}

0.739650 (0.048542) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 50}

0.827152 (0.051752) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 100}

0.843543 (0.056119) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 150}

0.849557 (0.055848) with: {'learning_rate': 0.03, 'max_depth': 3, 'n_estimators': 200}

0.740037 (0.040934) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 50}

0.826966 (0.045216) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 100}

0.841845 (0.047665) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 150}

0.845978 (0.047794) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 200}

0.720503 (0.038676) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 50}

0.798275 (0.047791) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 100}

0.808659 (0.048699) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 150}

0.812894 (0.047902) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 200}

0.716254 (0.039716) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 50}

0.795603 (0.049370) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 100}

0.804215 (0.054399) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 150}

0.806022 (0.054965) with: {'learning_rate': 0.03, 'max_depth': 9, 'n_estimators': 200}

0.714920 (0.040201) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 50}

0.796940 (0.043692) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 100}

0.803563 (0.047487) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 150}

0.805639 (0.049146) with: {'learning_rate': 0.03, 'max_depth': 11, 'n_estimators': 200}

0.717114 (0.040552) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 50}

0.798669 (0.044140) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 100}

0.807001 (0.047485) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 150}

0.808231 (0.048622) with: {'learning_rate': 0.03, 'max_depth': 13, 'n_estimators': 200}

0.716787 (0.040747) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 50}

0.800528 (0.042525) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 100}

0.810075 (0.045364) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 150}

0.810928 (0.047001) with: {'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 200}

0.748057 (0.039107) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 50}

0.796450 (0.044658) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 100}

0.810749 (0.049107) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 150}

0.818271 (0.049566) with: {'learning_rate': 0.06, 'max_depth': 1, 'n_estimators': 200}

0.825470 (0.054236) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 50}

0.847820 (0.057729) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 100}

0.852501 (0.057970) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 150}

0.855974 (0.057133) with: {'learning_rate': 0.06, 'max_depth': 3, 'n_estimators': 200}

0.830130 (0.042166) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 50}

0.848818 (0.043202) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 100}

0.850634 (0.043955) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 150}

0.850776 (0.044242) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 200}

0.797091 (0.049104) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 50}

0.811453 (0.050410) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 100}

0.812925 (0.050391) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 150}

0.813141 (0.050317) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 200}

0.798523 (0.048830) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 50}

0.807724 (0.053522) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 100}

0.808858 (0.053694) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 150}

0.809064 (0.053787) with: {'learning_rate': 0.06, 'max_depth': 9, 'n_estimators': 200}

0.795488 (0.045973) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 50}

0.803783 (0.051639) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 100}

0.805366 (0.052070) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 150}

0.805499 (0.052113) with: {'learning_rate': 0.06, 'max_depth': 11, 'n_estimators': 200}

0.796173 (0.046698) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 50}

0.806388 (0.050425) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 100}

0.807511 (0.050917) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 150}

0.807696 (0.050925) with: {'learning_rate': 0.06, 'max_depth': 13, 'n_estimators': 200}

0.795853 (0.045518) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 50}

0.805835 (0.048817) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 100}

0.806752 (0.049863) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 150}

0.806967 (0.049886) with: {'learning_rate': 0.06, 'max_depth': 15, 'n_estimators': 200}

0.782405 (0.041673) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 50}

0.810724 (0.050393) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 100}

0.820115 (0.051026) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 150}

0.825857 (0.051649) with: {'learning_rate': 0.09, 'max_depth': 1, 'n_estimators': 200}

0.843458 (0.056602) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 50}

0.855060 (0.056710) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 100}

0.858793 (0.055724) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 150}

0.860149 (0.055734) with: {'learning_rate': 0.09, 'max_depth': 3, 'n_estimators': 200}

0.842437 (0.046911) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 50}

0.849599 (0.045852) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 100}

0.850152 (0.046078) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 150}

0.849891 (0.046197) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 200}

0.807907 (0.051134) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 50}

0.810696 (0.051038) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 100}

0.810941 (0.050779) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 150}

0.810979 (0.050839) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 200}

0.804573 (0.052898) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 50}

0.809204 (0.053292) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 100}

0.809325 (0.053303) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 150}

0.809351 (0.053284) with: {'learning_rate': 0.09, 'max_depth': 9, 'n_estimators': 200}

0.804379 (0.051647) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 50}

0.807157 (0.053047) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 100}

0.807332 (0.053061) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 150}

0.807335 (0.053062) with: {'learning_rate': 0.09, 'max_depth': 11, 'n_estimators': 200}

0.809283 (0.050355) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 50}

0.812004 (0.052245) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 100}

0.812156 (0.052289) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 150}

0.812158 (0.052290) with: {'learning_rate': 0.09, 'max_depth': 13, 'n_estimators': 200}

0.808697 (0.047241) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 50}

0.811460 (0.049551) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 100}

0.811645 (0.049603) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 150}

0.811647 (0.049603) with: {'learning_rate': 0.09, 'max_depth': 15, 'n_estimators': 200}

0.797008 (0.044026) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 50}

0.819497 (0.048774) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 100}

0.828557 (0.049254) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 150}

0.831446 (0.048579) with: {'learning_rate': 0.12, 'max_depth': 1, 'n_estimators': 200}

0.850108 (0.054443) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 50}

0.860703 (0.051990) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 100}

0.862097 (0.050875) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 150}

0.862991 (0.050771) with: {'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 200}

0.845629 (0.050619) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 50}

0.846694 (0.051708) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 100}

0.846881 (0.051518) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 150}

0.847447 (0.051179) with: {'learning_rate': 0.12, 'max_depth': 5, 'n_estimators': 200}

0.818390 (0.048416) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 50}

0.820131 (0.048414) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 100}

0.820054 (0.048396) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 150}

0.820016 (0.048421) with: {'learning_rate': 0.12, 'max_depth': 7, 'n_estimators': 200}

0.804340 (0.057268) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 50}

0.806046 (0.057127) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 100}

0.806095 (0.057104) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 150}

0.806095 (0.057104) with: {'learning_rate': 0.12, 'max_depth': 9, 'n_estimators': 200}

0.810022 (0.052949) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 50}

0.810958 (0.053529) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 100}

0.810963 (0.053537) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 150}

0.810963 (0.053537) with: {'learning_rate': 0.12, 'max_depth': 11, 'n_estimators': 200}

0.807990 (0.050201) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 50}

0.809496 (0.050527) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 100}

0.809512 (0.050529) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 150}

0.809512 (0.050529) with: {'learning_rate': 0.12, 'max_depth': 13, 'n_estimators': 200}

0.810050 (0.051373) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 50}

0.811131 (0.052055) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 100}

0.811146 (0.052061) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 150}

0.811146 (0.052061) with: {'learning_rate': 0.12, 'max_depth': 15, 'n_estimators': 200}

0.807162 (0.048547) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 50}

0.824273 (0.050445) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 100}

0.830500 (0.050552) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 150}

0.830391 (0.051783) with: {'learning_rate': 0.15, 'max_depth': 1, 'n_estimators': 200}

0.852195 (0.056525) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 50}

0.858841 (0.055583) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 100}

0.860678 (0.055755) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 150}

0.860202 (0.056060) with: {'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 200}

0.851480 (0.042938) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 50}

0.852485 (0.043547) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 100}

0.852983 (0.043729) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 150}

0.853004 (0.043800) with: {'learning_rate': 0.15, 'max_depth': 5, 'n_estimators': 200}

0.811017 (0.051230) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 50}

0.811935 (0.051563) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 100}

0.812016 (0.051550) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 150}

0.812016 (0.051550) with: {'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 200}

0.807335 (0.054503) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 50}

0.807742 (0.054438) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 100}

0.807742 (0.054438) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 150}

0.807742 (0.054438) with: {'learning_rate': 0.15, 'max_depth': 9, 'n_estimators': 200}

0.810597 (0.052285) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 50}

0.810936 (0.052312) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 100}

0.810936 (0.052312) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 150}

0.810936 (0.052312) with: {'learning_rate': 0.15, 'max_depth': 11, 'n_estimators': 200}

0.814041 (0.049302) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 50}

0.814413 (0.049371) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 100}

0.814413 (0.049371) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 150}

0.814413 (0.049371) with: {'learning_rate': 0.15, 'max_depth': 13, 'n_estimators': 200}

0.807168 (0.053947) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 50}

0.807499 (0.054091) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 100}

0.807499 (0.054091) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 150}

0.807499 (0.054091) with: {'learning_rate': 0.15, 'max_depth': 15, 'n_estimators': 200}

0.810923 (0.050566) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 50}

0.826561 (0.050272) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 100}

0.830294 (0.049726) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 150}

0.830412 (0.050068) with: {'learning_rate': 0.18, 'max_depth': 1, 'n_estimators': 200}

0.847566 (0.059016) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 50}

0.854473 (0.056008) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 100}

0.855668 (0.056143) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 150}

0.855706 (0.055851) with: {'learning_rate': 0.18, 'max_depth': 3, 'n_estimators': 200}

0.841307 (0.052664) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 50}

0.841590 (0.053217) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 100}

0.841445 (0.053423) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 150}

0.841435 (0.053478) with: {'learning_rate': 0.18, 'max_depth': 5, 'n_estimators': 200}

0.807878 (0.052757) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 50}

0.808334 (0.052373) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 100}

0.808363 (0.052378) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 150}

0.808363 (0.052378) with: {'learning_rate': 0.18, 'max_depth': 7, 'n_estimators': 200}

0.804948 (0.054592) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 50}

0.805130 (0.054519) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 100}

0.805130 (0.054519) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 150}

0.805130 (0.054519) with: {'learning_rate': 0.18, 'max_depth': 9, 'n_estimators': 200}

0.803086 (0.052977) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 50}

0.803229 (0.052990) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 100}

0.803229 (0.052990) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 150}

0.803229 (0.052990) with: {'learning_rate': 0.18, 'max_depth': 11, 'n_estimators': 200}

0.806149 (0.054086) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 50}

0.806294 (0.054156) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 100}

0.806294 (0.054156) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 150}

0.806294 (0.054156) with: {'learning_rate': 0.18, 'max_depth': 13, 'n_estimators': 200}

0.805339 (0.054438) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 50}

0.805497 (0.054478) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 100}

0.805497 (0.054478) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 150}

0.805497 (0.054478) with: {'learning_rate': 0.18, 'max_depth': 15, 'n_estimators': 200}

0.818772 (0.048965) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 50}

0.830305 (0.048710) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 100}

0.832875 (0.048551) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 150}

0.833115 (0.049489) with: {'learning_rate': 0.21, 'max_depth': 1, 'n_estimators': 200}

0.852619 (0.055268) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 50}

0.854279 (0.055507) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 100}

0.855926 (0.055786) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 150}

0.857225 (0.055403) with: {'learning_rate': 0.21, 'max_depth': 3, 'n_estimators': 200}

0.844948 (0.048417) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 50}

0.844659 (0.048358) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 100}

0.844761 (0.048342) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 150}

0.844807 (0.048326) with: {'learning_rate': 0.21, 'max_depth': 5, 'n_estimators': 200}

0.816587 (0.052132) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 50}

0.816323 (0.052509) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 100}

0.816322 (0.052509) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 150}

0.816322 (0.052509) with: {'learning_rate': 0.21, 'max_depth': 7, 'n_estimators': 200}

0.807687 (0.050865) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 50}

0.807783 (0.050856) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 100}

0.807783 (0.050856) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 150}

0.807783 (0.050856) with: {'learning_rate': 0.21, 'max_depth': 9, 'n_estimators': 200}

0.807752 (0.054800) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 50}

0.807782 (0.054819) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 100}

0.807782 (0.054819) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 150}

0.807782 (0.054819) with: {'learning_rate': 0.21, 'max_depth': 11, 'n_estimators': 200}

0.806377 (0.052411) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 50}

0.806415 (0.052447) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 100}

0.806415 (0.052447) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 150}

0.806415 (0.052447) with: {'learning_rate': 0.21, 'max_depth': 13, 'n_estimators': 200}

0.807638 (0.052222) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 50}

0.807671 (0.052247) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 100}

0.807671 (0.052247) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 150}

0.807671 (0.052247) with: {'learning_rate': 0.21, 'max_depth': 15, 'n_estimators': 200}

0.819971 (0.046487) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 50}

0.830501 (0.048655) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 100}

0.832064 (0.049740) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 150}

0.831840 (0.050128) with: {'learning_rate': 0.24, 'max_depth': 1, 'n_estimators': 200}

0.857136 (0.046683) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 50}

0.859483 (0.045770) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 100}

0.859945 (0.045322) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 150}

0.859801 (0.045460) with: {'learning_rate': 0.24, 'max_depth': 3, 'n_estimators': 200}

0.850955 (0.049845) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 50}

0.850508 (0.050615) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 100}

0.850476 (0.050598) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 150}

0.850498 (0.050571) with: {'learning_rate': 0.24, 'max_depth': 5, 'n_estimators': 200}

0.811733 (0.057462) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 50}

0.811878 (0.057440) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 100}

0.811878 (0.057440) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 150}

0.811878 (0.057440) with: {'learning_rate': 0.24, 'max_depth': 7, 'n_estimators': 200}

0.807850 (0.060428) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 50}

0.807894 (0.060424) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 100}

0.807894 (0.060424) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 150}

0.807894 (0.060424) with: {'learning_rate': 0.24, 'max_depth': 9, 'n_estimators': 200}

0.802244 (0.059772) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 50}

0.802246 (0.059770) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 100}

0.802246 (0.059770) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 150}

0.802246 (0.059770) with: {'learning_rate': 0.24, 'max_depth': 11, 'n_estimators': 200}

0.807033 (0.061863) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 50}

0.807040 (0.061864) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 100}

0.807040 (0.061864) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 150}

0.807040 (0.061864) with: {'learning_rate': 0.24, 'max_depth': 13, 'n_estimators': 200}

0.804463 (0.063512) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 50}

0.804475 (0.063511) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 100}

0.804475 (0.063511) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 150}

0.804475 (0.063511) with: {'learning_rate': 0.24, 'max_depth': 15, 'n_estimators': 200}

0.821150 (0.049890) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 50}

0.830742 (0.049213) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 100}

0.831787 (0.050679) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 150}

0.830709 (0.051395) with: {'learning_rate': 0.27, 'max_depth': 1, 'n_estimators': 200}

0.857873 (0.052985) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 50}

0.861046 (0.050332) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 100}

0.861720 (0.049712) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 150}

0.861372 (0.049998) with: {'learning_rate': 0.27, 'max_depth': 3, 'n_estimators': 200}

0.847206 (0.051159) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 50}

0.847094 (0.051525) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 100}

0.847037 (0.051513) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 150}

0.847035 (0.051514) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 200}

0.803202 (0.050403) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 50}

0.803226 (0.050360) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 100}

0.803226 (0.050360) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 150}

0.803226 (0.050360) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 200}

0.806931 (0.056619) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 50}

0.806930 (0.056616) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 100}

0.806930 (0.056616) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 150}

0.806930 (0.056616) with: {'learning_rate': 0.27, 'max_depth': 9, 'n_estimators': 200}

0.802898 (0.060888) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 50}

0.802900 (0.060887) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 100}

0.802900 (0.060887) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 150}

0.802900 (0.060887) with: {'learning_rate': 0.27, 'max_depth': 11, 'n_estimators': 200}

0.799887 (0.055534) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 50}

0.799886 (0.055534) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 100}

0.799886 (0.055534) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 150}

0.799886 (0.055534) with: {'learning_rate': 0.27, 'max_depth': 13, 'n_estimators': 200}

0.800050 (0.056070) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 50}

0.800051 (0.056071) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 100}

0.800051 (0.056071) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 150}

0.800051 (0.056071) with: {'learning_rate': 0.27, 'max_depth': 15, 'n_estimators': 200}

0.819760 (0.053159) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 50}

0.827881 (0.052422) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 100}

0.828890 (0.053188) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 150}

0.829313 (0.052821) with: {'learning_rate': 0.3, 'max_depth': 1, 'n_estimators': 200}

0.854570 (0.052578) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 50}

0.857880 (0.050891) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 100}

0.858274 (0.051601) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 150}

0.858004 (0.051720) with: {'learning_rate': 0.3, 'max_depth': 3, 'n_estimators': 200}

0.837382 (0.048349) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 50}

0.837511 (0.048140) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 100}

0.837538 (0.048128) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 150}

0.837538 (0.048128) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 200}

0.814336 (0.051179) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 50}

0.814383 (0.051205) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 100}

0.814383 (0.051205) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 150}

0.814383 (0.051205) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 200}

0.806069 (0.051545) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 50}

0.806069 (0.051545) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 100}

0.806069 (0.051545) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 150}

0.806069 (0.051545) with: {'learning_rate': 0.3, 'max_depth': 9, 'n_estimators': 200}

0.810698 (0.049687) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 50}

0.810698 (0.049687) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 100}

0.810698 (0.049687) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 150}

0.810698 (0.049687) with: {'learning_rate': 0.3, 'max_depth': 11, 'n_estimators': 200}

0.807420 (0.051992) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 50}

0.807420 (0.051992) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 100}

0.807420 (0.051992) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 150}

0.807420 (0.051992) with: {'learning_rate': 0.3, 'max_depth': 13, 'n_estimators': 200}

0.803384 (0.054540) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 50}

0.803384 (0.054540) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 100}

0.803384 (0.054540) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 150}

0.803384 (0.054540) with: {'learning_rate': 0.3, 'max_depth': 15, 'n_estimators': 200}


目录
打赏
0
0
0
0
1043
分享
相关文章
|
4月前
|
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
137 2
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
118 4
【Deepin 20系统】机器学习分类算法模型xgboost、lightgbm、catboost安装及使用
介绍了在Deepin 20系统上使用pip命令通过清华大学镜像源安装xgboost、lightgbm和catboost三个机器学习分类算法库的过程。
144 4
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
【7月更文挑战第23天】在Python编程中,掌握算法复杂度—时间与空间消耗,是提升程序效能的关键。算法如冒泡排序($O(n^2)$时间/$O(1)$空间),或使用Python内置函数找最大值($O(n)$时间),需精确诊断与优化。数据结构如哈希表可将查找从$O(n)$降至$O(1)$。运用`timeit`模块评估性能,深入理解数据结构和算法,使Python代码更高效。持续实践与学习,精通复杂度管理。
83 9
支付宝商业化广告算法问题之在DNN模型中,特征的重要性如何评估
支付宝商业化广告算法问题之在DNN模型中,特征的重要性如何评估
Python实现贝叶斯岭回归模型(BayesianRidge算法)并使用K折交叉验证进行模型评估项目实战
Python实现贝叶斯岭回归模型(BayesianRidge算法)并使用K折交叉验证进行模型评估项目实战
GBDT算法超参数评估(一)
GBDT(Gradient Boosting Decision Tree)是一种强大的机器学习技术,用于分类和回归任务。超参数调整对于发挥GBDT性能至关重要。其中,`n_estimators`是一个关键参数,它决定了模型中弱学习器(通常是决策树)的数量。增加`n_estimators`可以提高模型的复杂度,提升预测精度,但也可能导致过拟合,并增加训练时间和资源需求。
算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全
**摘要:** 这篇文章介绍了决策树作为一种机器学习算法,用于分类和回归问题,通过一系列特征测试将复杂决策过程简化。文章详细阐述了决策树的定义、构建方法、剪枝优化技术,以及优缺点。接着,文章讨论了集成学习,包括Bagging、Boosting和随机森林等方法,解释了它们的工作原理、优缺点以及如何通过结合多个模型提高性能和泛化能力。文中特别提到了随机森林和GBDT(XGBoost)作为集成方法的实例,强调了它们在处理复杂数据和防止过拟合方面的优势。最后,文章提供了选择集成学习算法的指南,考虑了数据特性、模型性能、计算资源和过拟合风险等因素。
128 0
算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全
GBDT算法超参数评估(二)
GBDT算法超参数评估关注决策树的不纯度指标,如基尼系数和信息熵,两者衡量数据纯度,影响树的生长。默认使用基尼系数,计算快速,而信息熵更敏感但计算慢。GBDT的弱评估器默认最大深度为3,限制了过拟合,不同于随机森林。由于Boosting的内在机制,过拟合控制更多依赖数据和参数如`max_features`。相比Bagging,Boosting通常不易过拟合。评估模型常用`cross_validate`和`KFold`交叉验证。
基于Python的推荐系统算法实现与评估
本文介绍了推荐系统的基本概念和主流算法,包括基于内容的推荐、协同过滤以及混合推荐。通过Python代码示例展示了如何实现基于内容的推荐和简化版用户-用户协同过滤,并讨论了推荐系统性能评估指标,如预测精度和覆盖率。文章强调推荐系统设计的迭代优化过程,指出实际应用中需考虑数据稀疏性、冷启动等问题。【6月更文挑战第11天】
1487 3

热门文章

最新文章