Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略

简介: Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略

COCO数据集的简介




       MS COCO的全称是Microsoft Common Objects in Context,起源于微软于2014年出资标注的Microsoft COCO数据集,与ImageNet竞赛一样,被视为是计算机视觉领域最受关注和最权威的比赛之一。

       COCO数据集是一个大型的、丰富的物体检测,分割和字幕数据集。这个数据集以scene understanding为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。目前为止有语义分割的最大数据集,提供的类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个。




官网地址:http://cocodataset.org


0、COCO数据集的80个类别—YoloV3算法采用的数据集


person(人)  

bicycle(自行车)  car(汽车)  motorbike(摩托车)  aeroplane(飞机)  bus(公共汽车)  train(火车)  truck(卡车)  boat(船)  

traffic light(信号灯)  fire hydrant(消防栓)  stop sign(停车标志)  parking meter(停车计费器)  bench(长凳)  

bird(鸟)  cat(猫)  dog(狗)  horse(马)  sheep(羊)  cow(牛)  elephant(大象)  bear(熊)  zebra(斑马)  giraffe(长颈鹿)  

backpack(背包)  umbrella(雨伞)  handbag(手提包)  tie(领带)  suitcase(手提箱)  

frisbee(飞盘)  skis(滑雪板双脚)  snowboard(滑雪板)  sports ball(运动球)  kite(风筝) baseball bat(棒球棒)  baseball glove(棒球手套)  skateboard(滑板)  surfboard(冲浪板)  tennis racket(网球拍)  

bottle(瓶子)  wine glass(高脚杯)  cup(茶杯)  fork(叉子)  knife(刀)

spoon(勺子)  bowl(碗)  

banana(香蕉)  apple(苹果)  sandwich(三明治)  orange(橘子)  broccoli(西兰花)  carrot(胡萝卜)  hot dog(热狗)  pizza(披萨)  donut(甜甜圈)  cake(蛋糕)

chair(椅子)  sofa(沙发)  pottedplant(盆栽植物)  bed(床)  diningtable(餐桌)  toilet(厕所)  tvmonitor(电视机)  

laptop(笔记本)  mouse(鼠标)  remote(遥控器)  keyboard(键盘)  cell phone(电话)  

microwave(微波炉)  oven(烤箱)  toaster(烤面包器)  sink(水槽)  refrigerator(冰箱)

book(书)  clock(闹钟)  vase(花瓶)  scissors(剪刀)  teddy bear(泰迪熊)  hair drier(吹风机)  toothbrush(牙刷)


1、COCO数据集的意义


       MS COCO的全称是Microsoft Common Objects in Context,起源于是微软于2014年出资标注的Microsoft COCO数据集,与ImageNet 竞赛一样,被视为是计算机视觉领域最受关注和最权威的比赛之一。

       当在ImageNet竞赛停办后,COCO竞赛就成为是当前目标识别、检测等领域的一个最权威、最重要的标杆,也是目前该领域在国际上唯一能汇集Google、微软、Facebook以及国内外众多顶尖院校和优秀创新企业共同参与的大赛。

       该数据集主要解决3个问题:目标检测,目标之间的上下文关系,目标的2维上的精确定位。COCO数据集有91类,虽然比ImageNet和SUN类别少,但是每一类的图像多,这有利于获得更多的每类中位于某种特定场景的能力,对比PASCAL VOC,其有更多类和图像。


1、COCO目标检测挑战


COCO数据集包含20万个图像;

80个类别中有超过50万个目标标注,它是最广泛公开的目标检测数据库;

平均每个图像的目标数为7.2,这些是目标检测挑战的著名数据集。

2、COCO数据集的特点


COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:


Object segmentation

Recognition in context

Superpixel stuff segmentation

330K images (>200K labeled)

1.5 million object instances

80 object categories

91 stuff categories

5 captions per image

250,000 people with keypoints

对象分割;

在上下文中可识别;

超像素分割;

330K图像(> 200K标记);

150万个对象实例;

80个对象类别;

91个类别;

每张图片5个字幕;

有关键点的250,000人;

3、数据集的大小和版本


大小:25 GB(压缩)

记录数量: 330K图像、80个对象类别、每幅图像有5个标签、25万个关键点。

        COCO数据集分两部分发布,前部分于2014年发布,后部分于2015年,2014年版本:82,783 training, 40,504 validation, and 40,775 testing images,有270k的segmented people和886k的segmented object;2015年版本:165,482 train, 81,208 val, and 81,434 test images。

(1)、2014年版本的数据,一共有20G左右的图片和500M左右的标签文件。标签文件标记了每个segmentation的像素精确位置+bounding box的精确坐标,其精度均为小数点后两位。


COCO数据集的下载


官网地址:http://cocodataset.org/#download


1、2014年数据集的下载


train2014:http://images.cocodataset.org/zips/train2014.zip

val2014:http://images.cocodataset.org/zips/val2014.zip


http://msvocds.blob.core.windows.net/coco2014/train2014.zip


2、2017的数据集的下载


http://images.cocodataset.org/zips/train2017.zip

http://images.cocodataset.org/annotations/annotations_trainval2017.zip


http://images.cocodataset.org/zips/val2017.zip

http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip


http://images.cocodataset.org/zips/test2017.zip

http://images.cocodataset.org/annotations/image_info_test2017.zip


train2017

train2017:http://images.cocodataset.org/zips/train2017.zip

train2017 annotations:http://images.cocodataset.org/annotations/annotations_trainval2017.zip

val2017

val2017:http://images.cocodataset.org/zips/val2017.zip

val2017 annotations:http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip

test2017

test2017:http://images.cocodataset.org/zips/test2017.zip

test2017 info:http://images.cocodataset.org/annotations/image_info_test2017.zip


COCO数据集的使用方法


1、基础用法


(1)、Download Images and Annotations from [MSCOCO] 后期更新……

(2)、Get the coco code 后期更新……

(3)、Build the coco code 后期更新……

(4)、Split the annotation to many files per image and get the image size info 后期更新……

(5)、 Create the LMDB file 后期更新……


相关文章
|
5月前
|
机器学习/深度学习 存储 算法
MNIST数据集简介
【7月更文挑战第24天】MNIST数据集简介。
165 2
|
XML JSON 算法
【数据集转换】VOC数据集转COCO数据集·代码实现+操作步骤
与VOC一个文件一个xml标注不同,COCO所有的目标框标注都是放在一个json文件中的。
1418 1
Dataset之IMDB影评数据集:IMDB影评数据集的简介、下载、使用方法之详细攻略
Dataset之IMDB影评数据集:IMDB影评数据集的简介、下载、使用方法之详细攻略
|
机器学习/深度学习 计算机视觉
使用paddle搭建多种卷积神经网络实现Cifar10数据集 解析
本项目把几大重要的卷积神经网络进行了解析使用了Cifar10 项目是陆平老师的,解析采取了由上至下的方式,上面的解析详细,下面的可能没有标注 如果有疑问可以留言或私聊我都可以。
426 0
使用paddle搭建多种卷积神经网络实现Cifar10数据集 解析
|
JSON 数据格式 计算机视觉
MMDetection系列 | 2. MMDetection自定义数据集训练
MMDetection系列 | 2. MMDetection自定义数据集训练
764 0
MMDetection系列 | 2. MMDetection自定义数据集训练
|
网络协议 Shell Linux
PyG的Planetoid无法直接下载Cora等数据集的3个解决方式
本文仅考虑DNS污染情况下无法用torch_geometric.Planetoid类下载Cora等数据集的情况。其他使用GitHub仓库下载数据的解决方式类似,在此文中不再赘述。
PyG的Planetoid无法直接下载Cora等数据集的3个解决方式
|
机器学习/深度学习 移动开发 API
tensorflow2.0图片分类实战---对fashion-mnist数据集分类
tensorflow2.0图片分类实战---对fashion-mnist数据集分类
251 0
tensorflow2.0图片分类实战---对fashion-mnist数据集分类
|
缓存 NoSQL MongoDB
TensorFlow2.0(10):加载自定义图片数据集到Dataset
TensorFlow2.0(10):加载自定义图片数据集到Dataset
下载imagenet2012数据集
摸索了一下,imagenet2012下载,跟大家分享一下 用迅雷会员加速都可以下载,有的用百度云也可以离线下载http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_test.
7396 0
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch(四)】学习如何使用 PyTorch 读取并处理数据集
Pytorch(四)】学习如何使用 PyTorch 读取并处理数据集
Pytorch(四)】学习如何使用 PyTorch 读取并处理数据集