输出结果
核心代码
def inputs_origin(data_dir):
filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in range(1, 6)]
……
filename_queue = tf.train.string_input_producer(filenames)
read_input = cifar10_input.read_cifar10(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32)
return reshaped_image
if __name__ == '__main__':
with tf.Session() as sess:
reshaped_image = inputs_origin('cifar10_data/cifar-10-batches-bin')
threads = tf.train.start_queue_runners(sess=sess)
sess.run(tf.global_variables_initializer())
if not os.path.exists('cifar10_data/raw/'):
os.makedirs('cifar10_data/raw/')
for i in range(30):
image_array = sess.run(reshaped_image)
scipy.misc.toimage(image_array).save('cifar10_data/raw/%d.jpg' % i)