MAT之PSO:利用PSO算法优化二元函数,寻找最优个体适应度

简介: MAT之PSO:利用PSO算法优化二元函数,寻找最优个体适应度

实现结果

https://imgconvert.csdnimg.cn/aHR0cHM6Ly9pbWFnZXMyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvMTMxMzQ3NS8yMDE4MDIvMTMxMzQ3NS0yMDE4MDIyNjE5MzQwNDUyMi0xMzc5NzY0OTE5LmdpZg


设计代码

figure

[x,y] = meshgrid(-5:0.1:5,-5:0.1:5);

z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20;

mesh(x,y,z)  

hold on

c1 = 1.49445;

c2 = 1.49445;

maxgen = 1000;  

sizepop = 100;  

Vmax = 1;

Vmin = -1;

popmax = 5;    

popmin = -5;

for i = 1:sizepop

   pop(i,:) = 5*rands(1,2);

   V(i,:) = rands(1,2);    

   fitness(i) = fun(pop(i,:));  

end

[bestfitness bestindex] = max(fitness);

zbest = pop(bestindex,:);  

gbest = pop;    

fitnessgbest = fitness;  

fitnesszbest = bestfitness;  

for i = 1:maxgen

 

   for j = 1:sizepop  

       V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));

       V(j,find(V(j,:)>Vmax)) = Vmax;

       V(j,find(V(j,:)<Vmin)) = Vmin;

     

       pop(j,:) = pop(j,:) + V(j,:);

       pop(j,find(pop(j,:)>popmax)) = popmax;

       pop(j,find(pop(j,:)<popmin)) = popmin;

     

       fitness(j) = fun(pop(j,:));

   end

 

   for j = 1:sizepop  

       if fitness(j) > fitnessgbest(j)

           gbest(j,:) = pop(j,:);

           fitnessgbest(j) = fitness(j);

       end

     

       if fitness(j) > fitnesszbest

           zbest = pop(j,:);

           fitnesszbest = fitness(j);

       end

   end

   yy(i) = fitnesszbest;            

end

[fitnesszbest, zbest]

plot3(zbest(1), zbest(2), fitnesszbest,'ro','linewidth',1.5)

title('粒子群算法:绘制的目标函数三维网格图,红圈为最优点—Jason niu')

figure

plot(yy)

title('PSO:利用粒子群算法实现对目标函数寻找最优个体适应度—Jason niu','fontsize',12);

xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);


相关文章
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
16天前
|
存储 关系型数据库 分布式数据库
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
23 5
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
1月前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
1月前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
2月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
24 1
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
数据采集 缓存 算法
算法优化的常见策略有哪些
【10月更文挑战第20天】算法优化的常见策略有哪些