DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释)、案例应用之详细攻略

简介: 链式法则/计算图解释

 DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释)、案例应用之详细攻略

相关文章:DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理

 

 

目录

BP算法思路简介

1、神经网络训练的优化目标

2、梯度下降

3、反向传播(backpropagation)算法

4、前向传播计算

5、反向传播误差信号

6、更新参数

链式法则

链式法则简介

1、链式法则与复合函数

2、链式法则和计算图

链式法则使用


BP算法原理推导—以三层神经网络为例

image.gifimage.gifimage.gifimage.gif

1、理论推导

1.1、前向传播计算

数学式子描述该神经网络

(1)、一般情况下,同一层的激活函数都是一样的,并且此处是进行二分类,所以隐藏层、输出层都可以采用Sigmoid激活函数。

输入数据 隐藏层1 隐藏层2 输出层
image.gif

image.gif

image.gif

image.gif

image.gif

image.gif

image.gif

前向传播计算

 

image.gif

image.gif image.gif
经过Sigmoid函数输出 image.gifimage.gifimage.gif image.gifimage.gif image.gif

1.2、反向传播计算

        反向传播的计算过程。假设我们使用随机梯度下降的方式来学习神经网络的参数,损失函数定义为 L(y,y^),其中y是该样本的真实类标。使用梯度下降进行参数的学习,我们必须计算出损失函数关于 神经网络中各层参数(权重w和偏置b)的偏导数。

0、比如要对第k隐藏层参数w、b求偏导数

image.gif

1、先计算image.gifimage.gif

因为偏置b是一个常数项,因此偏导数的计算也很简单。

 

2、再计算image.gif

 

 

2、BP算法带入实例推导

image.gifimage.gifimage.gifimage.gif

 

 

 

 

 

 

 

 

BP算法思路简介

        前馈神经网络(NN),而是和循环神经网络(RNN)的概念是相对的。而反向传播方法可以用在FF网络中,此时,基于反向传播算法的前馈神经网络,被称为BP神经网络。       

       反向传播(Backpropagation)算法,深度学习模型采用梯度下降和误差反向传播进行模型参数更新。

image.gif

 

1、神经网络训练的优化目标

image.gif

梯度下降(Gradient Descent):

  • 求解非线性无约束优化问题的最基本方法;
  • 最小化损失函数的一种常用的一阶优化方法。

 

2、梯度下降

沿负梯度方向,函数值下降最快

image.gif    image.gifimage.gif          image.gif

 

3、反向传播(backpropagation)算法

深度学习模型,采用梯度下降和误差反向传播进行模型参数更新。

image.gif
  • 随机初始化网络权重
  • 前向传播计算网络输出
  • 计算误差
  • 后向传播误差到前一层; 计算梯度
  • 前面层更新权重和偏置参数
  • 从步骤2重复该过程最小化误差直到损失收敛

 

4、前向传播计算

image.gifimage.gif

使用损失函数比较实际输出和期望输出

image.gif

计算图(Computation Graph):计算过程可以表示成有向图的形式。 image.gif
前向计算过程:
计算各计算结点的导数。
image.gif

 

5、反向传播误差信号

后向传播误差到前面的层,传播的误差用来计算损失函数的梯度。

image.gif

计算损失函数?对各参数的梯度(偏导数)

  • 输出层连接权重的梯度
  • 隐藏层连接权重的梯度
  • 偏置项的梯度
image.gif

 

反向传播(backpropagation)

  • 任何导数均可通过将相应连接边上的导数连乘得到。
  • 若求导涉及多条路径,需要将每条路径上的导数连乘起来,然后再求和。
image.gif

 

6、更新参数

得到梯度以后,就可以进行更新参数。

image.gif

 

 

链式法则

链式法则简介

       链式法chain rule,属于微积分领域,是微积分中的求导法则,用于求一个复合函数的导数,是在微积分的求导运算中一种常用的方法。复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。

image.gif

       这个结论可推广到任意有限个函数复合到情形,于是复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。

 

1、链式法则与复合函数

         链式法则是关于复合函数的导数的性质:如果某个函数由复合函数表示,则该复合函数的导数可以用构成复合函数的各个函数的导数的乘积表示。

         数学式表示

                                                  image.gif

 

2、链式法则和计算图

        其中“**2”节点表示平方运算,沿着与正方向相反的方向,乘上局部导数后传递。反向传播的计算顺序是,先将节点的输入信号乘以节点的局部导数(偏导数),然后再传递给下一个节点。

                                    image.gif    image.gif

反向传播是基于链式法则的。

(1)、根据计算图的反向传播的结果,dz/dx = 2(x + y)

image.gif

(2)、乘法的反向传播:左图是正向传播,右图是反向传播。

          image.gif     image.gif
        因为乘法的反向传播会乘以输入信号的翻转值,所以各自可按1.3 × 5 =6.5、1.3 × 10 = 13 计算。另外,加法的反向传播只是将上游的值传给下游,并不需要正向传播的输入信号。但是,乘法的反向传播需要正向传播时的输入信号值。因此,实现乘法节点的反向传播时,要保存正向传播的输入信号。

(3)、购买苹果的反向传播的例子:这个问题相当于求“支付金额关于苹果的价格的导数”“支付金额关于苹果的个数的导数”“支付金额关于消费税的导数”。

image.gif

 

 

链式法则使用

1、求导案例

image.gif

 

 

 

 

 

 


相关文章
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
59 0
|
1月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
57 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
1月前
|
机器学习/深度学习 算法
深度学习笔记(四):神经网络之链式法则详解
这篇文章详细解释了链式法则在神经网络优化中的作用,说明了如何通过引入中间变量简化复杂函数的微分计算,并通过实例展示了链式法则在反向传播算法中的应用。
45 0
深度学习笔记(四):神经网络之链式法则详解
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
2月前
|
算法 Java 数据安全/隐私保护
国密加密算法简介
国密指国家密码局认定的国产密码算法,主要包括SM1、SM2、SM3、SM4等,并持续完善。SM1是对称加密算法,加密强度与AES相当,需加密芯片支持;SM2是非对称加密,基于ECC算法,签名和密钥生成速度优于RSA;SM3为杂凑算法,安全性高于MD5;SM4为对称加密算法,用于无线局域网标准。本文提供使用Java和SpringBoot实现SM2和SM4加密的示例代码及依赖配置。更多国密算法标准可参考国家密码局官网。
174 1
|
1月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
1月前
|
存储 算法 安全
ArrayList简介及使用全方位手把手教学(带源码),用ArrayList实现洗牌算法,3个人轮流拿牌(带全部源码)
文章全面介绍了Java中ArrayList的使用方法,包括其构造方法、常见操作、遍历方式、扩容机制,并展示了如何使用ArrayList实现洗牌算法的实例。
15 0
|
2月前
|
算法 C++
如何精确计算出一个算法的CPU运行时间?
如何精确计算出一个算法的CPU运行时间?
|
2月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
3月前
|
算法
【算法】贪心算法简介
【算法】贪心算法简介