如何揪出并预防AI偏误?

简介: 任何AI应用的成功都与训练数据密切相关。您不仅需要合适的数据质量和合适的数据量,还要主动确保您的AI工程师没有将自己的潜在偏误传递到开发的产品上。

image.png
任何AI应用的成功都与训练数据密切相关。您不仅需要合适的数据质量和合适的数据量,还要主动确保您的AI工程师没有将自己的潜在偏误传递到开发的产品上。如果工程师任由自己的世界观和成见影响数据集——也许提供仅限于某个统计人群或焦点的数据,依赖AI解决问题的应用系统将同样有偏误、不准确、用处不大。

简而言之,我们必须不断检测并消除AI应用系统中的人为偏误,才能让这项技术发挥潜力。我预计,随着AI继续从一种比较新的技术迅速变成一种完全无处不在的技术,偏误审查力度只会有增无减。但必须克服人为偏误才能真正实现这一幕。Gartner在2018年的一份报告预测,到2030年,85%的AI项目将提供数据或算法中内置的偏误或管理那些部署的团队中存在的偏误所导致的错误结果。事关重大;错误的AI会导致声誉严重受损,并给基于AI提供的错误结论做出决策的企业带来惨重的失败后果。

识别AI偏误
AI偏误有多种形式。源自开发人员的认知偏误会影响机器学习模型和训练数据集。实际上,偏误固化到算法中。不完整的数据本身也会产生偏误——如果信息因认知偏误而被忽略,尤其如此。一个在没有偏误的情况下训练和开发的AI投入使用时,其结果仍有可能受到部署偏误的影响。汇总偏误是另一种风险,当针对AI项目做出的小选择对结果的完整性产生巨大的集体影响时,就会出现这种情况。简而言之,任何AI环节都有许多固有的步骤会被引入偏误。

检测和消除AI偏误
为了实现可信赖的依赖AI的应用系统,可以面对无数用例(和用户)始终如一地获得准确的输出,组织就需要有效的框架、工具包、流程和政策来识别和积极减少AI偏误。可用的开源工具有助于测试AI应用,看看数据中是否存在特定的偏误、问题和盲点。

AI框架。旨在保护组织免受AI偏误风险的框架可以引入制衡机制,最大限度地减少整个应用开发和部署过程中的不当影响。可以使用这些框架,将可信无偏误实践的衡量基准实现自动化,并植入到产品中。

这里有几个例子:

劳斯莱斯的Aletheia框架提供了分32个步骤的流程,用于设计准确且精心管理的AI应用系统。
德勤的AI框架突显了实施AI防护和道德实践的六个基本维度。
Naveen Joshi的框架细述了开发可信赖AI的核心实践。它专注于可解释性、机器学习完整性、有意识的开发、可重复性和智能法规等方面的需要。
工具包。组织还应该利用可用的工具包来识别和消除机器学习模型中存在的偏误,并识别机器学习管道中的偏误模式。以下是一些特别有用的工具包:

IBM的AI Fairness 360是一个可扩展的开源工具包,可用于检查、报告和减少机器学习模型中的歧视和偏误。
IBM Watson OpenScale提供实时偏误检测和缓解,并支持详细的可解释性,使AI预测可信且透明。
谷歌的What-If工具提供了机器学习模型行为的可视化,因而可以对照机器学习公平性度量指标来轻松测试训练模型,以揪出偏误。
流程和政策。组织可能需要引入专门设计的新流程,以消除AI的偏误并加大对AI系统的信任。这些流程定义了偏误度量指标,并根据那些标准定期彻底地核查数据。政策应该发挥一种类似的作用,建立治理机制,要求严谨的实践和谨慎的行动,以最大限度地减少偏误和解决盲点。

记住:AI信任是一个商机
那些采取措施以减少AI系统中偏误的组织可以将这种潜在的危机转化为获取竞争差异化优势的机会。倡导反偏误措施可以使客户对AI应用系统抱有更大的信心和信任,从而使组织与众不同。今天尤其如此,而随着AI遍地开花,将更是如此。在追求无偏误的AI方面确保透明度有利于企业发展。

先进的新AI算法正将AI带入新领域——从合成数据生成到迁移学习、强化学习、生成式网络和神经网络,不一而足。这每一个令人兴奋的新应用对偏误影响都会有各自的敏感性,必须先解决这些问题,这些技术才会蓬勃发展。

就AI偏误而言,错不在AI而在我们自己。应采取所有可用的措施以消除AI中的人为偏误,使组织能够开发出更准确、更有效、对客户更有吸引力的应用系统。

原文标题:AI bias is prevalent but preventable — here’s how to root it out,作者:Shomron Jacob, Iterate.ai


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

目录
相关文章
|
1月前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
|
28天前
|
人工智能 算法 前端开发
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
OmAgent 是 Om AI 与浙江大学联合开源的多模态语言代理框架,支持多设备连接、高效模型集成,助力开发者快速构建复杂的多模态代理应用。
189 72
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
|
14天前
|
人工智能 自然语言处理 搜索推荐
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
88 24
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
|
8天前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
732 14
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
5天前
|
人工智能 开发框架 数据可视化
Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用
Eino 是字节跳动开源的大模型应用开发框架,帮助开发者高效构建基于大模型的 AI 应用。支持组件化设计、流式处理和可视化开发工具。
116 27
|
4天前
|
存储 人工智能 NoSQL
Airweave:快速集成应用数据打造AI知识库的开源平台,支持多源整合和自动同步数据
Airweave 是一个开源工具,能够将应用程序的数据同步到图数据库和向量数据库中,实现智能代理检索。它支持无代码集成、多租户支持和自动同步等功能。
48 14
|
8天前
|
人工智能 自然语言处理 数据可视化
Cursor 为低代码加速,AI 生成应用新体验!
通过连接 Cursor,打破了传统低代码开发的局限,我们无需编写一行代码,甚至连拖拉拽这种操作都可以抛诸脑后。只需通过与 Cursor 进行自然语言对话,用清晰的文字描述自己的应用需求,就能轻松创建出一个完整的低代码应用。
520 8
|
6天前
|
人工智能 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.4 应用实践之 AI大模型外脑
PolarDB向量数据库插件通过实现通义大模型AI的外脑,解决了通用大模型无法触达私有知识库和产生幻觉的问题。该插件允许用户将新发现的知识和未训练的私有知识分段并转换为向量,存储在向量数据库中,并创建索引以加速相似搜索。当用户提问时,系统将问题向量化并与数据库中的向量进行匹配,找到最相似的内容发送给大模型,从而提高回答的准确性和相关性。此外,PolarDB支持多种编程语言接口,如Python,使数据库具备内置AI能力,极大提升了数据处理和分析的效率。
27 4
|
6天前
|
人工智能 自然语言处理 搜索推荐
现在最火的AI是怎么应用到体育行业的
AI在体育行业的应用日益广泛,涵盖数据分析、伤病预防、观众体验、裁判辅助等多个领域。通过传感器和可穿戴设备,AI分析运动员表现,提供个性化训练建议;预测伤病风险,制定康复方案;优化比赛预测和博彩指数;提升观众的个性化内容推荐和沉浸式观赛体验;辅助裁判判罚,提高准确性;发掘青训人才,优化训练计划;智能管理场馆运营和票务;自动生成媒体内容,提供实时翻译;支持电竞分析和虚拟体育赛事;并为运动员提供个性化营养和健康管理方案。未来,随着技术进步,AI的应用将更加深入和多样化。
|
22天前
|
人工智能 自然语言处理 JavaScript
微软开源课程!21节课程教你开发生成式 AI 应用所需了解的一切
微软推出的生成式 AI 入门课程,涵盖 21 节课程,帮助开发者快速掌握生成式 AI 应用开发,支持 Python 和 TypeScript 代码示例。
252 15

热门文章

最新文章