GO、Rust这些新一代高并发编程语言为何都极其讨厌共享内存?

简介: 今天我想再来讨论一下高并发的问题,我们看到最近以Rust、Go为代表的云原生、Serverless时代的语言,在设计高并发编程模式时往往都会首推管道机制,传统意义上并发控制的利器如互斥体或者信号量都不是太推荐。


今天我想再来讨论一下高并发的问题,我们看到最近以Rust、Go为代表的云原生、Serverless时代的语言,在设计高并发编程模式时往往都会首推管道机制,传统意义上并发控制的利器如互斥体或者信号量都不是太推荐。

这里我们先来看一下并发和并行的概念,我们知道并发是一个处理器同时处理多个任务,这里同时是逻辑上的,而并行同一时刻多个物理器同时执行不同指令,这里的同时物理上的。并发是要尽量在目前正在执行的任务遇到阻塞或者等待操作时,释放CPU,让其它任务得以调度,而并行则是同时执行不同任务而不相互影响。

而传统的信号量、互斥体的设计都是为了让单核CPU发挥出最大的性能,让程序在阻塞时释放CPU,通过控制共享变量的访问来达到避免冲突的目的,而想控制好这些共享变量的行为,其关键因此在于设计好时序,从本质上讲控制时序就是给系统加上红绿灯并配备路障,而这里你一定要记住,高性能系统需要的是立交桥、地下隧道这些基础设施,而不是交通信号等控制手段,好的并发系统一定要用流的概念来建模,而不是到处增加关卡路障。现在的处理都是多核架构,因此编程也要向并行倾斜,不过笔者在网上看到很多所谓标榜高并发教程中所举的例子,都把信号灯设计的时序很完美,却偏偏把立交桥全给扔了…..

信号灯应该为导流服务,而不应为限流而生

下面我们来看三段分别对应信号灯控制的操作,互斥体统治的“并发”,以及单纯的串行的代码,代码的目标其实就是要完成从0一直加到3000000的操作

信号灯控制

其实这种信号量的代码已经基本退化回了顺序执行的方案了。正如我们在前文《GO看你犯错,但是Rust帮你排坑所说》,Rust的变量生命周期检查机制,并不能支持在不同线程之间共享内存,即便可以曲线救国,也绝非官方推荐,因此这里先用Go带各位读者说明。

package main
import (
        "fmt"
        "sync"
        "time"
)
var count int
var wg1 sync.WaitGroup
var wg2 sync.WaitGroup
var wg3 sync.WaitGroup
var wg4 sync.WaitGroup
func goroutine1() {
        wg1.Wait()
        len := 1000000
        for i := 0; i < len; i++ {
                 count++
        }
        wg2.Done()
}
func goroutine2() {
        wg2.Wait()
        len := 1000000
        for i := 0; i < len; i++ {
                 count++
        }
        wg3.Done()
}
func goroutine3() {
        wg3.Wait()
        len := 1000000
        for i := 0; i < len; i++ {
                 count++
        }
        wg4.Done()
}
func main() {
        now := time.Now().UnixNano()
        wg1.Add(1)
        wg2.Add(1)
        wg3.Add(1)
        wg4.Add(1)
        go goroutine1()
        go goroutine2()
        go goroutine3()
        wg1.Done()
        wg4.Wait()
        fmt.Println(time.Now().UnixNano() - now)
        fmt.Println(count)
}

image.gif

在这里三个子协程goroutine,在4个信号量的控制下以多米诺骨牌的方式依次对于共享变量count进行操作,这段代码的运行结果如下:

4984300
3000000
成功: 进程退出代码 0.

image.gif

互斥体控制

与信号量完全退化成顺序执行不同,互斥体本质上同一时刻只能有一个goroutine执行到临界代码,但每个goroutine的执行顺序却无所谓,具体如下:

package main
import (
        "fmt"
        "sync"
        "time"
)
var count int
var wg1 sync.WaitGroup
var mutex sync.Mutex
func goroutine1() {
        mutex.Lock()
        len := 1000000
        for i := 0; i < len; i++ {
               count++
        }
        mutex.Unlock()
        wg1.Done()
}
func main() {
        now := time.Now().UnixNano()
        wg1.Add(3)
        go goroutine1()
        go goroutine1()
        go goroutine1()
        wg1.Wait()
        fmt.Println(time.Now().UnixNano() - now)
        fmt.Println(count)
}

image.gif

从运行实序上来看,互斥体的方案应该和信号量差不多,不过结果却令人意,在互斥体的控制下,这个程序性能反而还下降了30%,具体结果如下:

5986800
3000000
成功: 进程退出代码 0.

image.gif

串行方式:

最后用最返璞归真的做法,串行操作代码如下:

package main
import (
        "fmt"
        //"sync"
        "time"
)
var count int
func goroutine1() {
        len := 1000000
        for i := 0; i < len; i++ {
               count++
        }
}
func main() {
        now := time.Now().UnixNano()
        goroutine1()
        goroutine1()
        goroutine1()
        fmt.Println(time.Now().UnixNano() - now)
        fmt.Println(count)
}

image.gif

可以看到从效率上来讲,直接串行的方式和信号量的方式是差不多的,结果如下:

4986700
3000000
成功: 进程退出代码 0.

image.gif

也就是说费了半天劲,最终结果可能还不如直接串行执行呢。

Rust Future初探

Rust中的future机制有点类似于 JavaScript 中的promise机制。Future机制让程序员可以使用同步代码的方式设计高并发的异步场景。目前虽然Go当中也有一些defer的机制,但远没有Rust中的future这么强大。Future机制将返回值value与其计算方式executor分离,从而让程序员可以不再关注于具体时序机制的设计,只需要指定Future执行所需要的条件,以及执行器即可。

我们来看以下代码。

注:cargo.toml

[dependencies]
futures = { version = "0.3.5", features = ["thread-pool"] }

image.gif

代码如下:

use futures::channel::mpsc;
use futures::executor;
use futures::executor::ThreadPool;
use futures::StreamExt;
fn main() {
    let poolExecutor = ThreadPool::new().expect("Failed");
    let (tx, rx) = mpsc::unbounded::<String>();
    let future_values = async {
        let fut_tx_result = async move {
       let hello = String::from("hello world");
         for c in hello .chars() {
        tx.unbounded_send(c.to_string()).expect("Failed to send");
    }
        };
        poolExecutor.spawn_ok(fut_tx_result);
        let future_values = rx
            .map(|v| v)
            .collect();
        future_values.await
    };
    let values: Vec<String> = executor::block_on(future_values);
    println!("Values={:?}", values);
}

image.gif

上述代码中我们通过async指定了future_values ,并将这个Future指定给poolExecutor这个线程池执行,最后通过await方法,就可以让future全部执行完毕,而不必再用信号量控制具体的时序。

这样一来,只要深度掌握future机制,就可以不必再关心互斥体、信号量,具体的高度方式完全放心交给计算机去做优化,不但可以节约程序员的时间,也能充分发挥编译器的威力,尾号是避免出现那种扔掉立交桥,只要信号灯低级的错误方式。

Java虽然也有一定的Future实现,并且有Rust不具备的反射能力,但是冷起动一直是困扰Java的痛。因此在目前云原生的时代,Go和Rust尤其是Rust语言以其近首于C语言的启动速度,和运行效率真是很有可能在未来称王。

相关文章
|
9月前
|
Rust 安全 Linux
如何使用Rust进行系统编程?
在 Rust 中,要调用系统调用并与底层 C 函数进行交互,通常会使用 `libc` crate。`libc` 提供了 Rust 到 C 的 FFI(Foreign Function Interface)绑定,允许 Rust 代码调用和使用底层的 C 函数和系统调用。
217 0
|
4月前
|
Rust 安全 Java
探索Rust在系统级编程中的应用
【10月更文挑战第9天】Rust语言以其现代化设计、安全性和高性能,在系统级编程领域逐渐崭露头角。本文探讨Rust在操作系统开发、设备驱动、嵌入式系统和网络编程中的应用,介绍其核心优势及实施步骤,帮助读者了解如何在项目中有效利用Rust。
|
3月前
|
Rust 安全 云计算
Rust语言入门:安全性与并发性的完美结合
【10月更文挑战第25天】Rust 是一种系统级编程语言,以其独特的安全性和并发性保障而著称。它提供了与 C 和 C++ 相当的性能,同时确保内存安全,避免了常见的安全问题。Rust 的所有权系统通过编译时检查保证内存安全,其零成本抽象设计使得抽象不会带来额外的性能开销。Rust 还提供了强大的并发编程工具,如线程、消息传递和原子操作,确保了数据竞争的编译时检测。这些特性使 Rust 成为编写高效、安全并发代码的理想选择。
66 0
|
5月前
|
Rust 网络协议 安全
Rust在系统编程中的案例分享
Rust在系统编程中的案例分享
89 10
|
6月前
|
安全 Java 测试技术
Go 高性能编程心法探秘
文章深入探讨了Go语言在高性能编程中的各种技巧,包括常用数据结构的使用、内存管理、并发编程策略,以及如何通过减少锁的使用、有效利用sync包中的工具来优化程序性能。
33 0
|
7月前
|
Rust 编译器 程序员
Rust与C++的区别及使用问题之Rust避免多线程中的lifetime的问题如何解决
Rust与C++的区别及使用问题之Rust避免多线程中的lifetime的问题如何解决
|
7月前
|
Rust 安全 程序员
Rust与C++的区别及使用问题之Rust解决多线程下的共享的问题如何解决
Rust与C++的区别及使用问题之Rust解决多线程下的共享的问题如何解决
|
9月前
|
安全 Go 调度
|
9月前
|
Rust 安全 测试技术
Rust并发编程实践:快速入门系统级编程
Rust是一门现代的系统编程语言,它的设计目标是提供安全性、并发性和高性能。Rust的出现是为了解决其他编程语言在这些方面存在的一些问题和挑战。

热门文章

最新文章