算法常考真题详解:克隆图

简介: 算法面试真题详解:克隆图

克隆一张无向图. 无向图的每个节点包含一个 label 和一个列表 neighbors. 保证每个节点的 label 互不相同.
你的程序需要返回一个经过深度拷贝的新图. 新图和原图具有同样的结构, 并且对新图的任何改动不会对原图造成任何影响.
你需要返回与给定节点具有相同 label 的那个节点.

说明
关于无向图的表示

在线评测地址:领扣题库官网

样例1:
输入:
{1,2,4#2,1,4#4,1,2}
输出: 
{1,2,4#2,1,4#4,1,2}
解释:
1------2  
 \     |  
  \    |  
   \   |  
    \  |  
      4   

思路

从原图给定的点找到所有点
复制所有的点
复制所有的边

题解:

public class Solution {
    /**
     * @param node: A undirected graph node
     * @return: A undirected graph node
     */
    public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
        if (node == null) {
            return node;
        }

        // use bfs algorithm to traverse the graph and get all nodes.
        ArrayList<UndirectedGraphNode> nodes = getNodes(node);

        // copy nodes, store the old->new mapping information in a hash map
        HashMap<UndirectedGraphNode, UndirectedGraphNode> mapping = new HashMap<>();
        for (UndirectedGraphNode n : nodes) {
            mapping.put(n, new UndirectedGraphNode(n.label));
        }

        // copy neighbors(edges)
        for (UndirectedGraphNode n : nodes) {
            UndirectedGraphNode newNode = mapping.get(n);
            for (UndirectedGraphNode neighbor : n.neighbors) {
                UndirectedGraphNode newNeighbor = mapping.get(neighbor);
                newNode.neighbors.add(newNeighbor);
            }
        }

        return mapping.get(node);
    }

    private ArrayList<UndirectedGraphNode> getNodes(UndirectedGraphNode node) {
        Queue<UndirectedGraphNode> queue = new LinkedList<UndirectedGraphNode>();
        HashSet<UndirectedGraphNode> set = new HashSet<>();

        queue.offer(node);
        set.add(node);
        while (!queue.isEmpty()) {
            UndirectedGraphNode head = queue.poll();
            for (UndirectedGraphNode neighbor : head.neighbors) {
                if (!set.contains(neighbor)) {
                    set.add(neighbor);
                    queue.offer(neighbor);
                }
            }
        }

        return new ArrayList<UndirectedGraphNode>(set);
    }
}

更多题解参考:九章官网solution

相关文章
|
6月前
|
存储 人工智能 算法
图与树的遍历:探索广度优先、深度优先及其他遍历算法的原理与实现
图与树的遍历:探索广度优先、深度优先及其他遍历算法的原理与实现
398 0
|
5月前
|
存储 算法 Java
Java中,树与图的算法涉及二叉树的前序、中序、后序遍历以及DFS和BFS搜索。
【6月更文挑战第21天】Java中,树与图的算法涉及二叉树的前序、中序、后序遍历以及DFS和BFS搜索。二叉树遍历通过访问根、左、右子节点实现。DFS采用递归遍历图的节点,而BFS利用队列按层次访问。以下是简化的代码片段:[Java代码略]
47 4
|
4月前
|
存储 算法 Python
“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度
【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**
41 1
|
4月前
|
数据采集 存储 算法
「AIGC算法」图搜索算法详解
本文探讨了图搜索算法,包括遍历和最短路径搜索。DFS和BFS是遍历算法,前者使用栈深入搜索,后者用队列逐层遍历。Dijkstra、Bellman-Ford、A*、Floyd-Warshall和Johnson算法则解决最短路径问题。文中还给出了DFS的Python实现示例。这些算法在路径规划、网络分析等领域有重要应用。
80 0
|
6月前
|
存储 算法 C++
c++算法学习笔记 (8) 树与图部分
c++算法学习笔记 (8) 树与图部分
|
6月前
|
算法 数据可视化 大数据
圆堆图circle packing算法可视化分析电商平台网红零食销量采集数据
圆堆图circle packing算法可视化分析电商平台网红零食销量采集数据
|
5月前
|
算法 计算机视觉
图像处理之基于图的广度优先搜索组件标记算法
图像处理之基于图的广度优先搜索组件标记算法
32 0
|
5月前
|
存储 算法
数据结构学习记录——图应用实例-六度空间(题目描述、算法思路、伪代码及解读、图解)
数据结构学习记录——图应用实例-六度空间(题目描述、算法思路、伪代码及解读、图解)
57 0
|
6月前
|
算法 数据可视化
圆填充( CIRCLE PACKING)算法圆堆图圆形空间填充算法可视化
圆填充( CIRCLE PACKING)算法圆堆图圆形空间填充算法可视化
|
6月前
|
存储 算法
图的深度优先算法
图的深度优先算法
40 0