开发者社区> hiekay> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

python实现双均线策略

简介: python实现双均线策略
+关注继续查看

本文采用了聚宽平台接口进行量化策略设置:

一、效果图

双均线策略:双均线策略,当五日均线位于十日均线上方则买入,反之卖出。
image.png

二、证券知识:

策略收益(Total Returns)
最容易理解的一个概念,策略收益也就是策略开始到结束,总资产的变化率。

----本文 选取的平安银行 这只股票,通过双均线策略来计算策略收益。

基准收益(Benchmark Returns)
如果一个策略一年赚了50%,而这一年来上证指数上涨了100%,所以要评判一个策略的好坏,不过是要看它的收益率,还需要一个基准来衡量它的优劣性,这个准基就是准基收益率。

对于股票的策略如果高于上证指数,那么就跑赢了基准收益率,也就是跑赢了大盘;低于上证指数,那么就是跑输了基准收益率。所以说一个好的策略至少要高于基准收益。

----本文 选取的沪深三百指数,获取某段时间的基本收益。

贝塔(Beta)
代表了策略表现对大盘变化的敏感性,也即是策略与大盘的相关性。

例如一个策略的Beta为1.5,则大盘涨1%的时候,策略可能涨1.5%,反之亦然;如果一个策略的Beta为-1.5,说明大盘涨1%的时候,策略可能跌1.5%,反之亦然。

 分别是策略的每日收益和基准的每日收益

阿尔法(Alpha)
alpha是超额收益,它与市场波动无关,也就是说不是靠系统性的上涨而获得收益。

 分别是策略年化收益率、基准年化收益率和无风险利率(默认0.04)。

通过预测方向或者其他可解释原因的策略也即是alpha策略;而通过波动率来带来利润的策略就是beta策略。

夏普比率(Sharpe)
描述的是策略在单位总风险下所能获得的超额收益。

是策略收益波动率,也即是策略收益率的年化标准差。

所提诺比率(Sortino)
描述的是策略在单位下行风险下所能获得的超额收益。

是策略下行波动率。

信息比率(Information Ratio)
描述的是策略在单位超额风险下的超额收益。

是策略与基准每日收益差值的年化标准差。

最大回撤(Max Drawdown)
描述的策略最大的亏损情况。最大回撤通常越小越好。

是策略两日的累计收益。

三、python代码

# 导入函数库
from jqdata import *

# 初始化函数,设定基准等等
def initialize(context):
    # 设定沪深300作为基准
    set_benchmark('000300.XSHG')
    # 开启动态复权模式(真实价格)
    set_option('use_real_price', True)
    # 输出内容到日志 log.info()
    log.info('初始函数开始运行且全局只运行一次')
    # 过滤掉order系列API产生的比error级别低的log
    # log.set_level('order', 'error')

    ### 股票相关设定 ###
    # 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
    set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')

    ## 运行函数(reference_security为运行时间的参考标的;传入的标的只做种类区分,因此传入'000300.XSHG'或'510300.XSHG'是一样的)
      # 开盘前运行
    run_daily(before_market_open, time='before_open', reference_security='000300.XSHG')
      # 开盘时运行
    run_daily(market_open, time='open', reference_security='000300.XSHG')
      # 收盘后运行
    run_daily(after_market_close, time='after_close', reference_security='000300.XSHG')

## 开盘前运行函数
def before_market_open(context):
    # 输出运行时间
    log.info('函数运行时间(before_market_open):'+str(context.current_dt.time()))

    # 给微信发送消息(添加模拟交易,并绑定微信生效)
    # send_message('美好的一天~')

    # 要操作的股票:平安银行(g.为全局变量)
    g.security = '000001.XSHE'

## 开盘时运行函数
def market_open(context):
    log.info('函数运行时间(market_open):'+str(context.current_dt.time()))
    security = g.security
    # 获取股票的收盘价
    close_data = get_bars(security, count=5, unit='1d', fields=['close'])
    # 取得过去五天的平均价格
    MA5 = close_data['close'].mean()
    # 取得上一时间点价格
    current_price = close_data['close'][-1]
    # 取得当前的现金
    cash = context.portfolio.available_cash

    # 如果上一时间点价格高出五天平均价1%, 则全仓买入
    if (current_price > 1.01*MA5) and (cash > 0):
        # 记录这次买入
        log.info("价格高于均价 1%%, 买入 %s" % (security))
        print("当前可用资金为{0}, position_value为{0}".format(cash, context.portfolio.positions_value))
        # 用所有 cash 买入股票
        order_value(security, cash)
    # 如果上一时间点价格低于五天平均价, 则空仓卖出
    elif current_price < MA5 and context.portfolio.positions[security].closeable_amount > 0:
        # 记录这次卖出
        log.info("价格低于均价, 卖出 %s" % (security))
        # 卖出所有股票,使这只股票的最终持有量为0
        order_target(security, 0)

## 收盘后运行函数
def after_market_close(context):
    log.info(str('函数运行时间(after_market_close):'+str(context.current_dt.time())))
    #得到当天所有成交记录
    trades = get_trades()
    for _trade in trades.values():
        log.info('成交记录:'+str(_trade))
    log.info('一天结束')
    log.info('##############################################################')

四、最大回撤详细图
image.png

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
Python爬虫:scrapy防止爬虫被禁的策略
Python爬虫:scrapy防止爬虫被禁的策略
0 0
Python 金融量化 随机指标交易策略(下)
Python 金融量化 随机指标交易策略(下)
0 0
Python 金融量化 随机指标交易策略(上)
Python 金融量化 随机指标交易策略(上)
0 0
Python编写动量交易策略(下)
Python编写动量交易策略(下)
0 0
Python编写动量交易策略(上)
Python编写动量交易策略(上)
0 0
Python 金融量化 道路突破策略(唐奇安道路突破策略&布林带通道及其市场风险)
Python 金融量化 道路突破策略(唐奇安道路突破策略&布林带通道及其市场风险)
0 0
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
0 0
用python统计数据分析PAT甲乙级算法的考试和训练策略,附加横向设计图
python是做统计数据的好工具,在学习程序设计时,我们发现算法是一个难点,我们从’简单模拟’, ‘查找元素’, ‘图形输出’, ‘进制转换’, ‘字符串处理’,‘排序’,‘散列’,‘贪心’,‘二分’,‘two pointers’,‘其他’,‘数学’,‘链表’,几个角度分析算法的考试和训练策略,下一篇文章,分析数据结构的算法的考试和训练策略,如果你正在准备PAT甲乙级算法的考试和训练,会大有帮助,祝早日金榜题名。
0 0
python设计模式(二十二):策略模式
策略模式,让一个类的行为或其算法可以在运行时更改,策略是让实例化对象动态的更改自身的某些方法使用的是types.MethodType绑定。 说起策略的动态更改方法,就不得不对比一下元类的动态增加方法,元类是类的抽象,它负责一个抽象类创建、实例化,是通过type函数来绑定方法。
958 0
+关注
hiekay
java 数据分析 数据可视化 大数据
文章
问答
文章排行榜
最热
最新
相关电子书
更多
Python第五讲——关于爬虫如何做js逆向的思路
立即下载
数据智能驱动的企业增长之道
立即下载
Python 系列直播——深入Python与日志服务,玩转大规模数据分析处理实战第二讲
立即下载