数据结构应用案例——栈结构用于8皇后问题的回溯求解

简介: 【说明】本文来自由周世平老师主编的《C语言程序设计》教材。我作为参编人员执笔了第7、8章。“第8章 问题求解与算法”中“8.6.1 回溯法”以8皇后问题的求解为例,介绍了回溯法的解题过程。这个解决方案中用到了“栈”,引用至此,作为栈应用的例子。需要说明的是,教材面向程序设计初学者,并全文中并未提出过任何关于“栈”的描述。这样做,隐藏了术语,减少初学者的认知难度。对于数据结构的

【说明】本文来自由周世平老师主编的《C语言程序设计》教材。我作为参编人员执笔了第7、8章。“第8章 问题求解与算法”中“8.6.1 回溯法”以8皇后问题的求解为例,介绍了回溯法的解题过程。这个解决方案中用到了“栈”,引用至此,作为栈应用的例子。需要说明的是,教材面向程序设计初学者,并全文中并未提出过任何关于“栈”的描述。这样做,隐藏了术语,减少初学者的认知难度。对于数据结构的学习者而言,由于知识面的扩大,却用不着回避这样的术语了。于是,在阅读本文时,作为体会栈的应用,需要自行从中提取出应用栈式存储及处理的部分来。

【全文】
  回溯法是一种通用的搜索算法,几乎可以用于求解任何可计算的问题。算法的执行过程就像是在迷宫中搜索一条通往出口的路线,总是沿着某一方向向前试探,若能走通,则继续向前进;如果走不通,则要做上标记,换一个方向再继续试探,直到得出问题的解,或者所有的可能都试探过为止。
  下面,用经典的8皇后问题为例来讲解如何使用回溯的思想解决问题。

  8皇后问题是:在8×8的棋盘上摆放8个皇后,使其不能互相攻击,即任意的两个皇后不能处在同一行,同一列,或同一斜线上。可以把八皇后问题拓展为n皇后问题,即在n×n的棋盘上摆放n个皇后,使其任意两个皇后都不能处于同一行、同一列或同一斜线上。

  首先需要对棋盘进行描述。直观地,棋盘可以用二维数组表示,有皇后的棋格对应数组元素值为1,无皇后的棋格对应数组元素值为0。但这种存储结构并不是最简单有效的选择。
  图8.21中左边部分给棋盘的行、列编了号,提供的摆放方法,就是问题的一个解。右边的部分,将各行上皇后所在的列数记录下来,用这8个数字(4, 6, 8, 2, 7, 1, 3, 5),也构成了对问题解的一种描述。
这里写图片描述
图8.21 8皇后问题的一个解

  由此可以看出,可以定义一个一维数组int x[N];,用x[i]的值表示第i行上皇后所在的列数,n皇后问题的解可以用(x[1], x[2], ….. x[n])的形式描述。
  解决了数据表示的问题,设计数据处理的方法。这里要用回溯的策略,设计计算机对n皇后问题的求解方法。以4皇后为例,如图8.22所示,在图8.22(a)中,第1行第1列上放置一个皇后,图8.22(b)中确定第2行的可能放法,在尝试第1列、第2列由于相互攻击而放弃之后,确定在第3列放置可以继续,在图8.22(c)中继续对第3行进行考察,发现将所有4列都尝试过了,也没有办法将皇后安排一个合适的位置,对第4行做任何的尝试都没有意义,这时产生回溯,结果是在图8.22(d)中将第2行的皇后安排到第4列,然后第3行的暂时可以放在第2列,在图8.22(e)中试着确定第4行的皇后,却发现无解再次回溯,只能够如图8.22(f)所示将第1行的皇后放到第2列,再经图8.22(g)、(f)之后找到4皇后问题的一个解,那就是图8.22(g)的(2, 4, 1, 3)。
这里写图片描述
图8.22 用回溯找出4皇后问题一个解的过程

  在图8.23中,给出了求出4皇后问题所有解的完整过程的描述。图中(1 * * *)对应图8.22(a)中第1行皇后安排在第1列,其他行待定的状态,接下来的(1 3 * *)对应了图8.22(b)中第2行皇后安排在第3列的状态。可以判断出在这个状态下,继续尝试并不能够完成求解,于是发生回溯(其下方的B代表回溯),于是下一个尝试的状态将是(1 4 * *),……。将这样的过程继续下去,能够找出4皇后问题的所有解(2 4 1 3)和(3 1 4 2),如图8.23中两个加网格背景的结点。
这里写图片描述
图8.23 求出4皇后问题所有解的完整过程

  搞清楚用回溯法求解的过程后,将关注如何基于(x[1], x[2], ….. x[n])形式的解结构,写出让计算机完成求解过程的代码。4皇后问题尚且可以在纸上画出解,8皇后问题的可能解有8!=40320种,最终解有92种,必须要依靠计算机求解了。
  什么样的解才是可行的?需要描述出任何两个皇后可以“互相攻击”这样的条件:
  (1)有两个皇后处在同一行:解的结构(x[1], x[2], ….. x[n])已经保证同一行不会出现两个皇后。
  (2)有两个皇后处在同一列:表示为x[i]=x[k],假如在图8.23中出现表示为(1 1 * *)、(4 2 3 2)之类的结点,则说明有两个皇后在同一列了。
  (3)有两个皇后处在同一斜线:若两个皇后的摆放位置分别是第i行第x[i]列、第k行第x[k]列,若他们在棋盘上斜率为-1的斜线上,满足条件i-x[i]=k-x[k],例如(1 4 3 *)、(4 1 2 *);若他们在棋盘上斜率为1的斜线上,满足条件i+x[i]=k+x[k]。将这两个式子分别变换成i-k=x[i]-x[k]和i-k=x[k]-x[i],例如(3 4 1 *)。综合两种情况,两个皇后位于同一斜线上表示为|i-k|=|x[i]-x[k]|。
  在下面的程序实现中,place(x, k)函数用于判断在第k行第x[k]列放置皇后,是否会与前面摆放好的皇后产生相互攻击。只要有某行(第i行)的皇后与这个第k行的皇后处在同一列(x[i]=x[k])或者处在同一斜线(|i-k|=|x[i]-x[k]|),则立即返回假(0),表示不可能构成解。
  再接下来,就是在实现问题求解的nQueens(x, n)函数中,从第1行开始,逐行逐列地考察皇后的摆放,当遇到某一行所有可能情况试过不必再深入到下一行考察时,及时回溯到上一行,接着考察。
  程序实现中,将保存解的数组定义成了动态数组。多分配一个单元,因为数组的首元素x[0]一直空闲未用,有用的单元是x[1]到x[n]。
  
【例8.12】 求解8皇后问题的程序

#include <stdio.h>
#include <math.h>
#include <malloc.h>

void nQueens(int *x, int n);     /*求解n皇后问题*/
int place(int *x, int k);         /*判断是否可以在第k行第x[k]列摆放皇后*/
void printSolution(int *x, int n);  /*输出求解结果*/

int main()
{
    int n;
    int *x;                        /*存放求解结果的数组首地址*/
    scanf("%d", &n);
    x=(int*)malloc(sizeof(int)*(n+1));  /*动态分配数组空间, x[0]空闲*/
    nQueens(x, n);
    return 0;
}

/*如果一个皇后能放在第k行第x[k]列,则返回真(1),否则返回假(0)*/
int place(int *x, int k)
{
    int i;
    /*对前k-1行,逐行考察*/
    for(i=1; i<k; i++)
    {
        /*如果前k-1行中有某行的皇后与第k行的在同一列或同一斜线,返回0*/
        if((x[i]==x[k])||(fabs(x[i]-x[k])==fabs(i-k)))
            return 0;
    }
    /*能执行下一句,说明在第k行第x[k]列摆放皇后,不会互相攻击*/
    return 1;
}

/*求解在n×n的棋盘上,放置n个皇后,使其不能互相攻击*/
void nQueens(int *x, int n)
{
    int k;
    k = 1;    /*k是当前行*/
    x[k] = 0;  /*x[k]是当前列,进到循环中,立刻就会执行x[k]++,而选择了第1列*/
    while(k>0)/*当将所有可能的解尝试完后,k将变为0,结束求解过程*/
    {
        x[k]++;                      /*移到下一列*/
        while(x[k]<=n && !place(x, k))   /*逐列考察,找出能摆放皇后的列x[k]*/
            x[k]++;
        if(x[k]<=n)                   /*找到一个位置可以摆放皇后*/
        {
            if(k==n)                  /*是一个完整的解,输出解*/
                printSolution(x, n);
            else  /*没有完成最后一行的选择,是部分解,转向下一行*/
            {
                k++;    /*接着考察下一行*/
                x[k]=0;  /*到循环开始执行x[k]++后,下一行将从第1列开始考察*/
            }
        }
        else  /*对应x[k]>n的情形,这一行已经没有再试的必要,回溯到上一行*/
            k--;  /*上一行在原第x[k]列的下1列开始考察*/
    }
}

/*输出求解结果*/
void printSolution(int *x, int n)
{
    int i, j;
    for (i = 1; i <= n; i++)    /*输出第i行*/
    {
        for (j=1; j<=n; j++)
        {  
            if (j == x[i])    /*第x[i]列输出Q,其他列输出*号 */
                printf("Q");
            else
                printf("*");
        }
        printf("\n");
    }
    printf("\n");
}

【思考题】请从解题策略和程序中,找出何处使用了栈,是如何将栈应用于回溯过程的?

目录
相关文章
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
232 9
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
37 1
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
68 5
|
2月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
44 5
|
2月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
103 16
|
2月前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
2月前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
54 4