Android 性能稳定性测试工具 mobileperf 开源 (天猫精灵 Android 性能测试-线下篇)

简介: 阿里 QA 导读:最近阿里质量团队的开源项目不断,前有阿里妈妈的面向广告搜索推荐系统的线上测试和性能测试平台,现有天猫精灵的 Android 性能稳定性测试工具 mobileperf 开源。在内部大规模使用之后,拿出来回馈开源社区。感谢为开源做贡献的人,让我们给他们的github项目Star!

背景

天猫精灵业务主要有如下挑战:

1、除了天猫精灵手机 APP,还有带屏天猫精灵上很多 APP 都需要支持,比如天猫精灵 CC 上有 13 个 app,每个 app 使用场景各有不同,涵盖了通讯录、视频、音乐、购物等各种场景
2、相比手机 app,除了点击操作的触屏链路,天猫精灵还有语音链路

3、手机 app monkey test 一般可能也就云测平台上跑几个小时,语音压测需要连续测试 72 个小时以上,测试时长远超云测工具,对工具的稳定性提出了新的要求
4、相对现在定价动辄几千块,均价 2 千左右的手机,天猫精灵定价只有几百,硬件配置差些,所遇到的性能 稳定性挑战会更严峻

需求

本着前期先能发现问题,再深入定位问题,所以确定了线下、线上分步走的策略

1、线下方案,能方便采集性能数据,工具要支持 Android 手机、天猫精灵各种 Android 定制设备,支持 Android 全版本,轻量化,使用低门槛,尽可能少侵入甚至零侵入设备
2、线上性能指标 问题定位

本文是 Android 线下篇

线下方案选型

工具选型

Android App

代表:开源工具腾讯 GT、网易 Emmagee
劣势:Android 低版本有些功能需要 root,Android 高版本跨进程获取数据,权限限制,不兼容

PC adb 工具

优势:非侵入,权限高,能发现问题
劣势:需要连接数据线,便携性差点
**
SDK**

劣势:侵入式,需集成 SDK,不利于做竞品测试

GT github 上已表示 Android GT 后续不再支持 GT APP 版本,只支持 GT SDK

由于 Android 权限控制越来越严格,通过 APP 跨进程获取性能数据在 Android 高版本已越来越困难,由于 adb shell 权限比较高,相信 Android 会一直开放开发者权限,故方案选型阶段,采用了依赖 adb 的方案,开发了一套 Android 性能数据采集工具 mobileperf

还有一种思路,仍然是 app 形态,但用了 adb wifi 通道,look 之前也有过一些测试工具 app 的经验,相比采用 adb usb 方式 mobileperf 的担忧:

1、测试工具 app,应用进程优先级,还是会受 Android 限制,担心系统资源不足,测试进程优先级不高,被系统 kill 概率大,在 IOT 低端设备上被 kill 概率更大,进程保活是业界难题,黑科技手段层出不穷,并且存在随时被官方封杀的风险,路只会越走越窄,mobileperf 是 PC 程序,除非 adb usb 方式不能用了,设备失联,关机等恶劣情况,都 OK,与其花费很大精力探索各种黑科技上,还不如把精力放在 Android 允许范围内倒腾
2、带屏天猫精灵都是定制 Android 系统,测试工具 app 可能要做单独的适配,兼容性成本高点,这点 mobileperf 不用担心,只要是 Android 系统、adb 能用就可以,在各种 Android 定制设备,使用成本更低

3、由于是 APP,系统需要单独分配资源,比如工具发现的 anr,开发童鞋一看 cpu 占用信息,如果发现测试工具 app 占用 cpu 较高,就很容易受到挑战,找工具的锅(不排除有些 ANR 确实是工具导致的),而 mobileperf 采集都依赖系统命令,这种影响小些
4、长时间测试,比如 72 小时以上,adb wifi 担心会有点不稳定,毕竟要依赖网络

工具对比

mobileperf 跟 GT APP 对比如下:

image.png

架构

mobileperf 整体架构图:

image.png

工具自身影响

mobileperf 对 PC 的影响

image.png

测试 PC:MacBook Pro (Retina,15-inch, Mid 2015) 2.2 GHz 四核 Intel Core i7

工具稳定性:mobileperf 能支持跑 72 个小时以上,adb 断开重连都能继续采集

工具适用性:支持 mac linux windows 平台

工具 Android 兼容性验证

mobileperf Android 版本兼容性验证结果如下
image.png

效果

mobileperf 在项目中使用 1 年半,天猫精灵总共发现了性能 稳定性类问题几百个,bug 解决率都是 100%

采集原理

cpu

方案调研
1、dumpsys cpuinfo
2、top 命令

3、通过 proc/stat 计算 cpu 使用率

两者区别:Android CPU 使用率:top 和 dump cpuinfo 的不同,看网上一番讨论,top 更准

通过实验发现采集频率非常快时,top 有点耗 cpu,对手机本身性能有影响,自测,采集频率 1s,top 在低端手机上(红米)会占到 7%(100%统计方式)的 cpu 使用率,天猫精灵采集频率 5s,会有 20%占用(400%统计方式),发现 top 的底层实现是读取 proc 文件,top 对每个进程都有计算

网上提供了一种计算方式,原理上跟 top 一样,如果计算指定进程的 cpu 使用率,只需读对应的 proc 文件,通过 jiffies 计算就可以了,这样比 top 方式占用 cpu 低,计算方式如下

整机 cpu 使用率

通过读取/proc/stat ,这个文件包含了所有 cpu 核的汇总情况,所以后面计算不用考虑核数,占用率不会超过 100%

cpu 使用时间 = user+nice+system+iowait+irq+softirq

CPU 总时间=user+nice+system+idle+iowait+irq+softirq = cpu 使用时间 +cpu idle 时间

总 cpu 使用率=(cpu 使用时间 2-cpu 使用时间 1)/(cpu 总时间 2-cpu 总时间 1)*100%

进程 cpu 使用率

通过读取/proc/pid/stat

进程 cpu 使用时间 = utime+stime

进程 cpu 使用率=(进程 cpu 使用时间 2-进程 cpu 使用时间 1)/(cpu 总时间 2-cpu 总时间 1)*100%

选定方案
采集时间间隔 ,配置文件中默认 5 秒,由于对采集频率要求不高,top 支持同时采集多进程,结果简单易处理,实时性 可信度高,决定采用 top 的方式

测试过程中会生成 cpuinfo.csv,可以测试过程中查看,表中各列解释

image.png

汇总 xlsx 文件会在测试结束后生成,xlsx 数据跟 csv 数据完全一致,xlsx 汇总是根据 csv 的数据画的曲线(csv 没有画图功能)

image.png

内存

整机内存 可用内存通过 dumpsys meminfo 获取 Total RAM 、Free RAM

各进程 pss 通过 dumpsys meminfo package 获取 TOTAL 行 Pss Total 所在列的值,各进程 PSS 也可以通过 dumpsys meminfo 获取,只是拿不到各进程更详细的内存占比情况,比如堆大小、native、system、so 大小等

经在 CC 上测试发现 dumpsys meminfo 比 dumpsy meminfo package 耗时长,dumpsys meminfo 耗时 6s 多,dumpsys meminfo package 能在一秒内完成,采集频率 5s,dumpsy meminfo 会导致 CC 上 system_server 系统进程 cpu 由 2%增高到 80%,所以降低了 dumpsys meminfo 采集频率,采用 10 倍设置频率采集(比如 dumpsys meminfo package 5s,dumpsy meminfo 则 50s)

由于要支持多进程的情况,现在各进程 pss 通过解析 dumpsys meminfo 结果得到,dumpsys meminfo package 来获取各个进程的详细内存情况

在测试过程中会生成一个 meminfo.csv 文件,可以查看,表中各列解释

image.png

mem table
这个 csv 表格是用 dumpsys meminfo 得出的,汇总 xlsx 文件会在测试结束后生成,对应 meminfo 这个表格

image.png

每个进程会有 pss_部分包名的 csv 表格,这个表格是用 dumpsys meminfo package 得出的

image.png

能把每个进程的详细内存展示出来

汇总 xlsx 中对应 pss_部分包名这个表格

image.png

如果进程发生了内存泄露,根据曲线,很方便一眼就看出是哪部分导致泄漏

为了帮助定位内存泄漏问题,工具每隔一个小时会执行 am dumpheap package ,dump 进程内存,但不能像 LeakCanary 直接翻译出 GC 引用链,仍需人工分析下

流畅度(fps/丢帧)

fps 通过 dumpsys SurfaceFlinger 或 dumpsys gfxinfo(android8.0 之后)获得最近 128 帧数据计算得出,fps=帧数/耗费时间

如果以上两种方式都不 OK,机器有 root,用 service call SurfaceFlinger 1013 获取帧数

通过 dumpsys SurfaceFlinger 的方式还会计算丢帧 janky 值

丢帧:相邻两次绘制之间的丢帧数,丢帧数越多,说明问题越严重,mobileperf 默认丢帧数超过 10 帧算是严重丢帧

流畅度数据在 fps.csv 中

表中各列解释

image.png

页面打开耗时

mobileperf 从 logcat 日志中抓取 am_activity_fully_drawn_time 和 am_activity_launch_time(大多数情况)日志,

会生成 launch_logcat.csv

image.png

不过这种方式有个弊端,日志的耗时不能完全反馈真实的体验耗时,我们内部已有其他方案测试启动耗时

monkey(可限制 activity)

mobileperf 调用了 Android 原生的 monkey,如果您想限制在指定内 activity 内跑 monkey ,可以通过配置项,开启 monkey 后,会在测试目录下生成 monkey.log

image.png

logcat 日志(支持异常日志检测)

工具会保留全量 logcat 日志,每隔 60 万行会新建文件,辅助定位问题

image.png

如果配置文件中配置了异常日志

image.png

会将 logcat 中出现的异常日志都保存在 exception.log 中

image.png

根据异常汇总日志,再去 logcat 日志查看详细上下文信息,可以快速定位问题

流量

通过读取/proc/net/xt_qtaguid/stats 文件获取,因为 Android 提供的流量统计 API – TrafficStats 中,对 uid 进行流量统计的方法,能区分应用,底层就是读取了该文件,参考Android 性能测试之网络流量

流量数据在 traffics_uid.csv 中,表中各列解释

image.png

电量

先通过 dumpsys batteryproperties 获取,如果获取不到,再通过 dumpsys battery 获取(Android9)

问题:插着 usb,这两种方式获取到的并不精准,并非专业级电流电量测试,只能作为参考

电量数据在 powerinfo.csv 中,表中各列解释

image.png

由于功耗软件测试方式不太精准,我们内部已用硬件方案测试功耗,此项 mobileperf 中默认关闭

常驻进程 pid 监控

天猫精灵是整机,跟很多手机 app 不一样,是应用级别 app,可能会被用户手动 kill 掉,天猫精灵上有些系统优先级进程,不能挂掉,一旦挂掉,会导致无法使用,所以 mobileperf 新增了常驻进程 pid 监控,一旦 pid 发生了变化,认为发生了异常

pid_change_focus_package=com.alibaba.ailabs.genie.smartapp;com.alibaba.ailabs.genie.smartapp:core

磁盘剩余空间检查

天猫精灵跟很多手机 app 不一样,随便压测就是 3 天以上,如果有写文件不正常,占满磁盘空间,会导致机器彻底无法使用,影响用户体验,所以测试结束时,添加了对磁盘剩余空间检查,如果使用空间超过 80%,则自动提单

进程线程数

通过进程名获取 pid,ls -lt /proc/pid/task,统计多少行数即线程数

奉上 mobileperf 的 github 地址:https://github.com/alibaba/mobileperf 如果您觉得有帮助,请给个 star!同时如果有疑问的话,可以加入该钉钉答疑群。

190x190

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
28天前
|
数据采集 监控 机器人
浅谈网页端IM技术及相关测试方法实践(包括WebSocket性能测试)
最开始转转的客服系统体系如IM、工单以及机器人等都是使用第三方的产品。但第三方产品对于转转的业务,以及客服的效率等都产生了诸多限制,所以我们决定自研替换第三方系统。下面主要分享一下网页端IM技术及相关测试方法,我们先从了解IM系统和WebSocket开始。
45 4
|
2月前
|
测试技术 数据库连接 数据库
测试脚本的编写和维护对性能测试结果有何影响?
测试脚本的编写和维护对性能测试结果有着至关重要的影响,
33 1
|
4月前
|
Java 测试技术 Android开发
Android性能测试——发现和定位内存泄露和卡顿
本文详细介绍了Android应用性能测试中的内存泄漏与卡顿问题及其解决方案。首先,文章描述了使用MAT工具定位内存泄漏的具体步骤,并通过实例展示了如何分析Histogram图表和Dominator Tree。接着,针对卡顿问题,文章探讨了其产生原因,并提供了多种测试方法,包括GPU呈现模式分析、FPS Meter软件测试、绘制圆点计数法及Android Studio自带的GPU监控功能。最后,文章给出了排查卡顿问题的四个方向,帮助开发者优化应用性能。
237 4
Android性能测试——发现和定位内存泄露和卡顿
|
4月前
|
监控 中间件 测试技术
『软件测试5』测开岗只要求会黑白盒测试?NO!还要学会性能测试!
该文章指出软件测试工程师不仅需要掌握黑盒和白盒测试,还应该了解性能测试的重要性及其实现方法,包括负载测试、压力测试等多种性能测试类型及其在保证软件质量中的作用。
『软件测试5』测开岗只要求会黑白盒测试?NO!还要学会性能测试!
|
4月前
|
测试技术 Shell Android开发
Android 性能测试初探 (六)
本节聊聊性能测试的最后一项- 流量,当然我所指的性能测试是针对大部分应用而言的,可能还有部分应用会关注网速、弱网之类的测试,但本系列文章都不去一一探讨了。
61 6
|
4月前
|
JavaScript 测试技术 Android开发
Android 性能测试初探 (四)
本文介绍了GPU在移动端性能测试中的重要性,并详细解释了过度绘制、帧率和帧方差的概念。针对GPU测试,文章列举了三项主要测试内容:界面过度绘制、屏幕滑动帧速率和平滑度。其中,过度绘制测试需遵循特定标准,而帧速率和平滑度测试则可通过软件或硬件方法实现。在软件测试中,使用Systrace插件和高速相机是两种常用手段。对于不同机型,帧率及帧方差的测试标准也需相应调整。
64 5
|
4月前
|
测试技术 Shell Android开发
Android 性能测试初探 (三)
本文承接《Android性能测试初探(二)》,深入探讨CPU与内存测试。介绍了移动端内存测试的重要性及其测试目标,并详细列举了不同状态下应用内存消耗情况的测试项目。此外,还提供了多种内存测试方法,包括使用`procrank`等工具的具体操作步骤。最后,文章也简要提及了CPU测试的相关内容,帮助读者更好地理解Android性能测试的关键要素。
60 5
|
4月前
|
测试技术 Shell 定位技术
Android 性能测试初探 (五)
聊聊大家不常关注的测试项- 功耗
62 3
|
4月前
|
算法 测试技术 Android开发
Android 性能测试初探 (二)
上回大体介绍了下在 android 端的性能测试项,现在我们就细节测试项做一些阐述(包括如何自己 DIY 测试)
53 4
|
4月前
|
测试技术 API Android开发
Android 性能测试初探 (一)
Android 性能测试,跟pc性能测试一样分为客户端及服务器,但在客户端上的性能测试分为 2 类: 一类为 rom 版本的性能测试;一类为应用的性能测试。
57 3