让AI赋能数据,金融业准备好了吗?

简介: 金融业是国民经济的命脉,随着移动互联、在线支付的兴起,数据成为企业越来越重要的资产,金融产业也发生了翻天覆地的变化。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

金融业是国民经济的命脉,随着移动互联、在线支付的兴起,数据成为企业越来越重要的资产,金融产业也发生了翻天覆地的变化。特别是金融+科技的结合,让金融产业提供的能力正在从过去围绕资金的服务逐步向围绕数据服务转变。

于此同时,金融业面临着整个市场饱和和互联网金融等新兴金融服务的竞争,特别是对中小商业银行、证券和保险等行业带来了巨大的挑战。如何借助科技的力量来实现自身竞争力。成为金融企业面对的最大挑战。因此金融业在积极构建现代数据架构和借助强大智能的平台,来加速开创业务应用,并发挥数据价值,最终实现运营成本降低和营销精准化。

海量应用无法得到有效管理

liz33bkKuFDs_600

对于中国区域银行来讲,面对整个市场增长趋向饱和,不仅面临互联网银行的竞争,也面临各大商业银行的竞争。某城商银行也在积极向着数字化、网络化和智能化的方向发展,希望向着服务更丰富、更普惠的大众金融模式转变,能够提高金融服务效率。

某城商银行在个人、公司存款、贷款类、信用卡,理财等线下服务的基础上,也逐步开发出基金代销、信用授权、电子银行、外汇服务、金融同业、生活缴费等上百种应用,这些丰富的应用背后是对包括关系型数据库:Oracle、DB2、mysql、sqlserver产生的结构化数据,以及MongoDB, HBase 、 ActiveMQ, WebService等非结构化数据库产生的半结构化数据,同时包括更多的网站APP日志、社交媒体、视频、图片等数据。如何统一管理这些海量数据成为某城商银行一大挑战。

企业IT架构现代化进程受阻

liSAeSImTJPzk_600

驾驭不同的数据成为某城商银行的新的挑战,对于某城银行来讲,不仅数据中心拥有不同型号、不同品牌的存储设备,同时线上线下产生大的数据,某城银行不仅要每时每刻管理来自各个网点的核心数据,还要收集来自互联网注册的视频数据以及物联网、互联网上等各种资讯数据以及客服录音数据等,如何实现基础架构云化、容器化,提升基础资源的利用和管理效率是现有IT架构面临的挑战。

同时在IT运维方面,有的应用涉及各种开源软件、开发者平台,难以用传统的方法描述与度量,处理的复杂度相当大。如何利用自动化运维的技术和工具,结合云计算、智能时代的运维需求,从而释放员工做更有价值的事情也成为某城商银行面临的挑战。

传统数据模型无法有效满足风险规避

liMIuKlB10IPo_600

伴随着全球经济的不确定,金融行业面临着不确定风险和欺诈行为等挑战加剧。包括交易反欺诈、反洗钱、审计合规、内部操作风险等。如何通过AI提升风险评估效率成为金融行业的挑战。面对金融风控,如何利用 AI 进行数字画像和数据模型建设来实施处理数据,生成风险计算,为客户提供有关发展风险的个性化建议,并将客户与相关服务联系起来。成为金融行业对于AI应用的需求。伴随着机器学习理论的发展和成熟如何第一时间、快速建模、精准判断成为人工智能重要的应用趋势。金融行业特别希望获得能够对数据进行精准识别和分析的AI工具来提供风控、监管和合规的人工智能解决方案。

数据不能更好的为AI业务所用

liWy6QUC5o5Og_600

对于金融业来讲,资产管理正在经历重大变革。商业模式正从基于佣金的方式转变为基于目标的计划辅助工具,对客户进行精准的需求分析和个性化的服务成为行业的需求。因此客户洞察成为确定如何提供这种体验是最直接和战略性的之一。

某证券公司负责人谈到,“客户洞察的经验传承是难点,随着越来越多的财富管理顾问一代一代的退休,如何让他们的专业知识和能力延续成为我们考虑的问题,我们希望通过AI来让新顾问能快速增强他们的专业知识能力。”如何通过AI分析和认知工具来来认知用户,帮助了解每个客户及其财务目标,来量身定制的产品和服务,并提供更好的差异化财富管理经验成为证券公司的新需求。

面对包括金融业在内的所有希望利用AI来赋能数据的企业,至顶网将推出《纵论智能企业》的大咖说短视频栏目,邀请IBM大咖专家围绕AI讲述企业故事中的场景落地,针对更多行业AI使用场景进行探讨,深入浅出的讲解AI如何结合行业数据来赋能应用实践。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-23
本文作者:任新勃
本文来自:“至顶网”,了解相关信息可以关注“至顶网

相关文章
|
2月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
2月前
|
人工智能 关系型数据库 分布式数据库
拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
|
2月前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
84 6
|
20天前
|
人工智能 安全 DataX
【瓴羊数据荟】 Data x AI :大模型时代的数据治理创新实践 | 瓴羊数据Meet Up城市行第三期
第三期瓴羊数据Meetup 将于2025年1月3日在线上与大家见面,共同探讨AI时代的数据治理实践。
78 10
【瓴羊数据荟】 Data x  AI :大模型时代的数据治理创新实践 | 瓴羊数据Meet Up城市行第三期
|
1天前
|
传感器 机器学习/深度学习 人工智能
智能电网巡检与传感器数据AI自动分析
智能电网设备巡检与传感器数据分析利用AI技术实现自动化分析和预警。通过信息抽取、OCR技术和机器学习,系统可高效处理巡检报告和实时数据,生成精准报告并提供故障预判和早期识别。AI系统24小时监控设备状态,实时发出异常警报,确保设备正常运行,提升运维效率和可靠性。
|
20天前
|
存储 人工智能 人机交互
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
PC Agent 是上海交通大学与 GAIR 实验室联合推出的智能 AI 系统,能够模拟人类认知过程,自动化执行复杂的数字任务,如组织研究材料、起草报告等,展现了卓越的数据效率和实际应用潜力。
113 1
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
|
6天前
|
传感器 机器学习/深度学习 人工智能
技术分享:智能电网巡检与传感器数据自动分析——AI助力设备状态实时监控与故障预警
这篇文章介绍了AI在智能电网巡检与传感器数据分析中的应用,通过信息抽取、OCR识别和机器学习等技术,实现设备状态监控和故障预警的自动化。AI系统能够高效处理巡检报告和传感器数据,精准识别设备故障并实时预警,显著提升了电网运营的安全性和可靠性。随着AI技术的发展,其在智能电网管理中的作用将日益重要。
|
1月前
|
存储 机器学习/深度学习 人工智能
【AI系统】完全分片数据并行 FSDP
本文深入探讨了AI框架中针对权重数据、优化器数据和梯度数据的分布式并行实现,特别是在PyTorch框架下的具体方案。文章首先回顾了通用数据并行和分布式数据并行的概念,重点讨论了同步与异步数据并行的差异。接着,文章详细介绍了如何在PyTorch中实现弹性数据并行,特别是完全分片数据并行(FSDP)的机制,包括其如何通过分片模型状态和剩余状态来减少内存消耗,提高训练效率。此外,文章还探讨了混合精度训练、损失缩放和内存消耗估算等关键技术,为理解和实施高效的分布式训练提供了全面的指导。
68 9
【AI系统】完全分片数据并行 FSDP
|
13天前
|
存储 数据采集 算法
构建AI数据管道:从数据到洞察的高效之旅最佳实践
本文探讨了大模型从数据处理、模型训练到推理的全流程解决方案,特别强调数据、算法和算力三大要素。在数据处理方面,介绍了多模态数据的高效清洗与存储优化;模型训练中,重点解决了大规模数据集和CheckPoint的高效管理;推理部分则通过P2P分布式加载等技术提升效率。案例展示了如何在云平台上实现高性能、低成本的数据处理与模型训练,确保业务场景下的最优表现。
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
【AI系统】数据并行
数据并行是一种在分布式AI系统中广泛应用的技术,通过将数据集划分成多个子集并在不同计算节点上并行处理,以提高计算效率和速度。在大规模机器学习和深度学习训练中,数据并行可以显著加快模型训练速度,减少训练时间,提升模型性能。每个计算节点接收完整的模型副本,但处理不同的数据子集,从而分摊计算任务,提高处理速度和效率。数据并行按同步方式可分为同步数据并行和异步数据并行,按实现方式包括数据并行、分布式数据并行、完全分片的数据并行等。其中,分布式数据并行(DDP)是当前应用最广泛的并行算法之一,通过高效的梯度聚合和参数同步机制,确保模型一致性,适用于大型NPU集群和AI系统。
112 7
【AI系统】数据并行

热门文章

最新文章