redis为什么那么快?结论有三点,大家都知道,这里主要是分析。

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介:

redis为什么那么快?结论有三点,大家都知道,这里主要是分析。

首先第一点

redis是内存访问的,所以快

当然这个大家都知道,所以不是重点

1|0io密集型和cpu密集型

一般我们把任务分为io密集型和cpu密集型

1|1io密集型

IO密集型指的是系统的CPU性能相对硬盘、内存要好很多,此时,系统运作,大部分的状况是CPU在等I/O (硬盘/内存) 的读/写操作,此时CPU Loading并不高。
对于io密集型的任务,它的主要时间都在磁盘io上,而io本身在发出中断告知cpu后,cpu只需要短暂的处理一下,之后就由DMA(详见附录)负责数据传输,整个过程对cpu的利用率很低。因此我们需要开更多的线程去充分利用cpu。即一般线程数 = cpu核心数 * 2,如数据库连接池

1|2cpu密集型

CPU密集型也叫计算密集型,指的是系统的硬盘、内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading很高。
对于cpu密集型的任务,它对cpu的利用率很高,所以不需要开更多的线程去提高cpu利用率。假如增加线程,只会引起线程的频繁切换导致本来就不够用的cpu更加不够用。所以一般是线程数 = cpu核心数 + 1

2|0redis的瓶颈在哪里

redis基本都在进行内存io,那它的瓶颈在io上吗?

redis在网络io上使用epoll实现了一个io多路复用的reactor模型,epoll是非阻塞io,所以避免了cpu阻塞在io上,所以它不是io密集型,瓶颈不在于等待io导致cpu利用率不高,不需要多个线程来屏蔽等待io执行完成的时间。当然redis的io利用率很高,但是io利用率高并不代表它是io密集型,因为它瓶颈不在等待io上。

所以第二点

redis在网络io上使用epoll实现了一个io多路复用的reactor模型使得cpu利用率更高,浪费在io上的时间更少

redis并不需要多线程来提高cpu利用率减少io等待时间,并且单线程架构也比较容易实现,所以顺理成章就采用了单线程架构。

关于epoll可以看我的这篇文章:https://www.cnblogs.com/fatmanhappycode/p/12362423.html

第三点

由于采用了单线程架构,避免了线程线程切换产生的消耗

因为一次CPU上下文的切换大概在 1500ns 左右。

从内存中读取 1MB 的连续数据,耗时大约为 250us,假设1MB的数据由多个线程读取了1000次,那么就有1000次时间上下文的切换,

那么就有1500ns * 1000 = 1500us ,我单线程的读完1MB数据才250us ,你光时间上下文的切换就用了1500us了,我还不算你每次读一点数据 的时间

那么redis是cpu密集型吗?答案是否定的。

redis也不是cpu密集型。大多数情况下redis机器上的cpu是很够用的。

redis的瓶颈在于内存大小和网络带宽。

如果想要更充分的利用多核cpu,可以采用多个redis实例的方法,同时为了减少线程争用,可以将实例和cpu绑定的方法。

但是如果做了CPU绑定,在rdb和aof时子进程会与父进程共享使用一个CPU。子进程重写时对单核CPU使用率通常在90%以上,父进程与子进程将产生激烈CPU竞争,极大影响Redis稳定性。(解决方法不清楚,也许多绑定一个CPU会好点?)

3|0附录

3|1DMA

DMA 传输将数据从一个地址空间复制到另外一个地址空间。当CPU 初始化这个传输动作,传输动作本身是由 DMA 控制器来实行和完成。

典型的例子就是移动一个外部内存的区块到芯片内部更快的内存区。例如内存移到磁盘。

最后惯例附一图:

参考资料:

https://www.php.cn/redis/422123.html

https://blog.csdn.net/youanyyou/article/details/78990156

本文作者:肥宅快乐码
本文链接:https://www.cnblogs.com/fatmanhappycode/p/12708861.html

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
6月前
|
缓存 监控 NoSQL
【Redis性能瓶颈揭秘】「调优系列」深入分析热Key的排查策略和解决方案
【Redis性能瓶颈揭秘】「调优系列」深入分析热Key的排查策略和解决方案
215678 12
|
6月前
|
NoSQL Java Redis
使用Redis实例搭建网上商城的商品相关性分析程序
本教程将指导您如何快速创建实例并搭建网上商城的商品相关性分析程序。(ApsaraDB for Redis)是兼容开源Redis协议标准的数据库服务,基于双机热备架构及集群架构,可满足高吞吐、低延迟及弹性变配等业务需求。
17584 0
|
27天前
|
存储 NoSQL Redis
Redis 新版本引入多线程的利弊分析
【10月更文挑战第16天】Redis 新版本引入多线程是一个具有挑战性和机遇的改变。虽然多线程带来了一些潜在的问题和挑战,但也为 Redis 提供了进一步提升性能和扩展能力的可能性。在实际应用中,我们需要根据具体的需求和场景,综合评估多线程的利弊,谨慎地选择和使用 Redis 的新版本。同时,Redis 开发者也需要不断努力,优化和完善多线程机制,以提供更加稳定、高效和可靠的 Redis 服务。
33 1
|
20天前
|
缓存 监控 NoSQL
Redis 缓存穿透的检测方法与分析
【10月更文挑战第23天】通过以上对 Redis 缓存穿透检测方法的深入探讨,我们对如何及时发现和处理这一问题有了更全面的认识。在实际应用中,我们需要综合运用多种检测手段,并结合业务场景和实际情况进行分析,以确保能够准确、及时地检测到缓存穿透现象,并采取有效的措施加以解决。同时,要不断优化和改进检测方法,提高检测的准确性和效率,为系统的稳定运行提供有力保障。
48 5
|
5月前
|
存储 NoSQL Redis
Redis系列学习文章分享---第九篇(Redis快速入门之好友关注--关注和取关 -共同关注 -Feed流实现方案分析 -推送到粉丝收件箱 -滚动分页查询)
Redis系列学习文章分享---第九篇(Redis快速入门之好友关注--关注和取关 -共同关注 -Feed流实现方案分析 -推送到粉丝收件箱 -滚动分页查询)
62 0
|
6月前
|
存储 消息中间件 缓存
Redis的高性能使得它非常适合用于实时分析场景
【5月更文挑战第15天】Redis在Python Web开发中扮演关键角色,常用于缓存系统,提高数据读取速度;会话管理,存储用户信息;分布式锁,确保数据一致性;排行榜和计数,利用有序集合和哈希结构;消息队列,基于列表结构实现异步处理;实时分析,高效处理实时数据。其丰富的数据结构和高性能使其在多种场景下应用广泛。
341 3
|
2月前
|
Oracle NoSQL 关系型数据库
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
389 2
|
2月前
|
存储 Prometheus NoSQL
Redis 内存突增时,如何定量分析其内存使用情况
【9月更文挑战第21天】当Redis内存突增时,可采用多种方法分析内存使用情况:1)使用`INFO memory`命令查看详细内存信息;2)借助`redis-cli --bigkeys`和RMA工具定位大键;3)利用Prometheus和Grafana监控内存变化;4)优化数据类型和存储结构;5)检查并调整内存碎片率。通过这些方法,可有效定位并解决内存问题,保障Redis稳定运行。
|
3月前
|
缓存 NoSQL 网络协议
【Azure Redis 缓存】Azure Redis Cluster 在增加分片数时失败分析
【Azure Redis 缓存】Azure Redis Cluster 在增加分片数时失败分析
|
3月前
|
存储 缓存 NoSQL
【Azure Redis 缓存】当使用Azure Redis 集群服务时候,发生了Moved的几点分析
【Azure Redis 缓存】当使用Azure Redis 集群服务时候,发生了Moved的几点分析