并行正则采样排序算法及在 Mars 中的应用

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 相信大家对排序算法都非常熟悉了,快速排序、堆排序、归并排序等等。如果我们想在一个很大的数据集上进行排序,能利用上多核,甚至是分布式集群,有什么办法么? 本文就介绍一种并行排序算法:并行正则采样排序算法(Parallel Sorting by Regular Sampling),简称 PSRS 算法。

相信大家对排序算法都非常熟悉了,快速排序、堆排序、归并排序等等。如果我们想在一个很大的数据集上进行排序,能利用上多核,甚至是分布式集群,有什么办法么?

本文就介绍一种并行排序算法:并行正则采样排序算法(Parallel Sorting by Regular Sampling),简称 PSRS 算法。

PSRS 算法过程

image

PSRS 算法的整个过程分为四步,如图所示,我们拆解开来讲。

现在假设我们有一个数组,有 48 个元素,现在数据被分成4份,即有4个分区。

阶段1,每个分区分别排序,并正则采样

我们对每个分区的数据调用快速排序,这样每个分区都是排好的数据。接着,我们从排好序的数据里正则采样4个数据。所谓正则,即有规律的,这里我们就每隔4个元素采样一个元素。

阶段2,归并采样数据,选出关键点

前面四个分区产生了4份采样数据,收集之,然后调用归并排序让他们有序。接着,我们从中选出 p - 1 (p 是分区个数)个关键点,这里还是正则采样的方式。

阶段3,数据分区

此时将关键点数据广播给每个分区,每个分区就可以根据关键点,将数据分成4份,使得每个数据落在各自的范围内。

阶段4,合并数据,归并排序

最后一个阶段是一个 shuffle 阶段,即每个下游都依赖前面的所有上游。此时每个分区将上游分好的数据收集起来,最终再进行一个归并排序。这样,我们最终的结果就是整体排序的了。

整个过程中,阶段1、阶段3 和 阶段4 可以并行。

MPI 的实现可以参考这里

PSRS 算法在 Mars 中的应用

Mars 以并行和分布式化 Python 数据科学栈为目标,PSRS 算法能很好解决并行排序问题,因此,Mars 中和排序有关的操作都是基于 PSRS 算法实现的。

以张量排序为例。

首先我们通过 Numpy 创建 1 亿个元素的数组。

In [1]: import numpy as np                                                      

In [2]: a = np.random.rand(1_0000_0000)                                         

In [3]: a.nbytes                                                                
Out[3]: 800000000

我们来看看使用 Numpy 的排序需要多久。

In [4]: %time np.sort(a)                                                        
CPU times: user 10.8 s, sys: 394 ms, total: 11.2 s
Wall time: 9.4 s
Out[4]: 
array([1.05764619e-10, 5.86309734e-09, 1.76225879e-08, ...,
       9.99999976e-01, 9.99999983e-01, 9.99999998e-01])

接着,我们来看看基于 PSRS 算法的 Mars tensor 排序需要多长时间。

In [10]: t = mt.tensor(a, chunk_size=1500_0000)                                 

In [12]: %time mt.sort(t).execute()                                             
CPU times: user 18.7 s, sys: 7.03 s, total: 25.7 s
Wall time: 2.66 s

在我的笔记本上,可以看到 Numpy 的排序时长是 Mars 的 3.53 倍。

总结

本文介绍了并行正则排序算法,这个算法也在 Mars 项目里得到了广泛的使用。

如果对 Mars 感兴趣,可以关注 Mars 团队专栏,或者钉钉扫二维码加入 Mars 讨论群。

IMG_8215

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 监控 JavaScript
基于布隆过滤器的 Node.js 算法在局域网电脑桌面监控设备快速校验中的应用研究
本文探讨了布隆过滤器在局域网电脑桌面监控中的应用,分析其高效空间利用率、快速查询性能及动态扩容优势,并设计了基于MAC地址的校验模型,提供Node.js实现代码,适用于设备准入控制与重复数据过滤场景。
175 0
|
2月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
217 3
|
2月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
2月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
2月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
|
2月前
|
并行计算 算法 调度
基于串行并行ADMM算法的主从配电网分布式优化控制研究(Matlab代码实现)
基于串行并行ADMM算法的主从配电网分布式优化控制研究(Matlab代码实现)
174 0
|
2月前
|
机器学习/深度学习 算法 安全
小场景大市场:猫狗识别算法在宠物智能设备中的应用
将猫狗识别算法应用于宠物智能设备,是AIoT领域的重要垂直场景。本文从核心技术、应用场景、挑战与趋势四个方面,全面解析这一融合算法、硬件与用户体验的系统工程。
|
2月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
130 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
842 3
|
4月前
|
机器学习/深度学习 人工智能 算法
AI-Compass 强化学习模块:理论到实战完整RL技术生态,涵盖10+主流框架、多智能体算法、游戏AI与金融量化应用
AI-Compass 强化学习模块:理论到实战完整RL技术生态,涵盖10+主流框架、多智能体算法、游戏AI与金融量化应用

热门文章

最新文章