CVPR 2020 Oral:一行代码提升迁移性能,中科院计算所研究生一作

简介:

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


在迁移学习任务中,一直存在这样的问题:

目标域由于没有标签,常常导致分界面附近混淆较多的数据。

中科院计算所的在读研究生崔书豪等,提出了一种新的解决方法:批量核范数最大化 (Batch Nuclear-norm Maximization,BNM)。

1

在典型的标签不足场景下(如半监督学习等),BNM可以有效地提升学习效果。

并且,大量实验表明,BNM的性能要优于目前主流的一些方法,并且搭配起来使用,效果也很不错。

这篇论文已被接收为CVPR 2020 Oral。

主要思路

类别预测的判别性与多样性同时指向批量响应矩阵的核范数,这样就可以最大化批量核范数来提高迁移问题中目标域的性能。

可以通过分析批量类别响应组成的批量矩阵A,尝试从判别性和迁移性进行优化。

判别性

所谓判别性,指的是预测类别的过程是否坚定。比如对于二类问题的响应:
1、[0.9,0.1]判别性较高
2、[0.6,0.4]判别性较低。

常见的方法采用最小化熵来得到较高的判别性。我们发现矩阵A的F范数与熵有着相反的单调性,从而可以通过最大化A的F范数来提升判别性。

多样性

多样性可以近似表达为批量矩阵中预测的类别数量,即预测的类别数量多则响应多样性大。

考虑不同类别响应的线性相关性,如果两个响应属于不同类别,那么响应会差别较大线性无关,如果属于相同类别则近似线性相关:

1、[0.9,0.1]与[0.1,0.9]线性无关

2、[0.9,0.1]与[0.8,0.2]近似线性相关。

那么预测类别数也就是矩阵中最大的线性无关向量数,即矩阵的秩。

BNM

核范数是矩阵奇异值的和,在数学上有两点结论:

1、核范数与F范数相互限制界限
2、核范数是矩阵秩的凸近似

所以类别预测的判别性与多样性同时指向矩阵的核范数,我们可以最大化矩阵核范数(BNM)来提升预测的性能。

2

比如上图中,如果使用熵最小化(EntMin)和BNM来优化,当熵相同的时候,使用BNM优化更容易使得核范数更大,从而预测对拥有较少数量的类别(绵羊)。

实现

在常用的框架Pytorch与Tensorflow中,均可通过一行代码实现BNM。

Pytorch:

3

TensorFlow:

4

应用

我们将BNM应用到三个标签不足的场景中:半监督学习、领域适应和开放域物体识别。

实验表明,在半监督学习中可以提升现有方法;在领域适应中BNM约束明显优于EntMin,并且单一的BNM约束可以达到与现有方法相近的性能,如下图:

5

在开放域物体识别中单一的BNM约束超过有着冗杂损失函数的UODTN,达到SOTA性能,如下图:

6

同时在开放域物体识别中,我们统计了随机采样的批量响应中未知类所占比例,如图:

7

我们发现BNM确实可以保持未知类所占比例,从而保障整体预测的类别数量与准确性,从而保持多样性。

此方法主要针对的是缺少标签场景下分界面附近数据密度较大的问题,对于迁移相关的任务有着较为普遍的改善价值。

作者介绍

论文作者包括中科院计算所学生崔书豪,卓君宝;计算所副研究员王树徽,李亮;国科大讲席教授黄庆明和华为诺亚方舟实验室田奇博士。

8

本文第一作者崔书豪,2018年本科毕业于清华大学自动化系,现在是中科院计算所VIPL实验室二年级硕士生,研究方向为深度领域适应学习与开放域学习技术。指导老师王树徽,长期从事跨模态、跨域分析推理技术研究

值得一提的是,崔书豪以第一作者向CVPR 2020提交了两篇论文,另一篇是Gradually Vanishing Bridge for Adversarial Domain Adaptation,目前也被接收。


【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-04
本文作者:贾浩楠
本文来自:“量子位公众号”,了解相关信息可以关注“公众号 QbitAI”

相关文章
|
机器学习/深度学习 人工智能 自然语言处理
ICML2023杰出论文大幅减少至6篇,北大、武理工校友获奖,大模型水印受青睐
ICML2023杰出论文大幅减少至6篇,北大、武理工校友获奖,大模型水印受青睐
104 0
ICML2023杰出论文大幅减少至6篇,北大、武理工校友获奖,大模型水印受青睐
|
机器学习/深度学习 达摩院 算法
同济、阿里的CVPR 2022最佳学生论文奖研究了什么?这是一作的解读(1)
同济、阿里的CVPR 2022最佳学生论文奖研究了什么?这是一作的解读
113 0
|
数据可视化 数据挖掘 大数据
同济、阿里的CVPR 2022最佳学生论文奖研究了什么?这是一作的解读(2)
同济、阿里的CVPR 2022最佳学生论文奖研究了什么?这是一作的解读
196 0
|
机器学习/深度学习 人工智能 算法
谷歌大牛Jeff Dean单一作者撰文:深度学习研究的黄金十年
谷歌大牛Jeff Dean单一作者撰文:深度学习研究的黄金十年
147 0
|
机器学习/深度学习 人工智能 自然语言处理
CVPR 2021大奖公布!何恺明获最佳论文提名,代码已开源!
深度生成模型可以在高分辨率下进行逼真的图像合成。但对于许多应用来说,这还不够:内容创作还需要可控。虽然最近有几项工作研究了如何分解数据中的潜在变化因素,但它们大多在二维中操作,忽略了我们的世界是三维的。
CVPR 2021大奖公布!何恺明获最佳论文提名,代码已开源!
|
编解码 算法 数据可视化
小模型实现大一统!Meta RL华人一作FBNetV5一举包揽CV任务3个SOTA(二)
Meta现实实验室(Meta Reality Lab)华人一作提出FBNetV5,这是一种在一次运行中同时为多个任务搜索架构的神经架构搜索(NAS)算法。针对三个基本的视觉任务:图像分类、物体检测和语义分割,FBNetV5搜索到的模型在所有三个任务中都超过了目前的SoTA水平。
321 0
小模型实现大一统!Meta RL华人一作FBNetV5一举包揽CV任务3个SOTA(二)
|
机器学习/深度学习 人工智能 编解码
小模型实现大一统!Meta RL华人一作FBNetV5一举包揽CV任务3个SOTA
Meta现实实验室(Meta Reality Lab)华人一作提出FBNetV5,这是一种在一次运行中同时为多个任务搜索架构的神经架构搜索(NAS)算法。针对三个基本的视觉任务:图像分类、物体检测和语义分割,FBNetV5搜索到的模型在所有三个任务中都超过了目前的SoTA水平。
234 0
小模型实现大一统!Meta RL华人一作FBNetV5一举包揽CV任务3个SOTA
|
机器学习/深度学习 vr&ar 图形学
CVPR 2020华人一作包揽最佳论文、最佳学生论文,中国作者占39%,清华高居第一
机器之心编辑部 在刚刚开幕的 CVPR 2020 上,最佳论文、最佳学生论文等奖项悉数公布,来自牛津大学的吴尚哲等人获得了最佳论文奖,本科毕业于上海交通大学、现为西蒙弗雷泽大学博士一年级学生 Zhiqin Chen 等人获得最佳学生论文。
259 0
CVPR 2020华人一作包揽最佳论文、最佳学生论文,中国作者占39%,清华高居第一
|
机器学习/深度学习 存储 人工智能
NeurIPS提前看 | 四篇论文,一窥元学习的最新研究进展
2019 年,NeurIPS 接受与元学习相关的研究论文约有 20 余篇。元学习(Meta-Learning)是近几年的研究热点,其目的是基于少量无标签数据实现快速有效的学习。本文对本次接收的元学习论文进行了梳理和解读。
1223 0
NeurIPS提前看 | 四篇论文,一窥元学习的最新研究进展
|
机器学习/深度学习 人工智能 编解码
一周AI论文 | Yann LeCun被骂退推特,都是因为这篇论文!
一周AI论文 | Yann LeCun被骂退推特,都是因为这篇论文!
224 0