Java是如何实现自己的SPI机制的? JDK源码(一)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: Java是如何实现自己的SPI机制的? JDK源码(一)

注:该源码分析对应JDK版本为1.8

1 引言

这是【源码笔记】的JDK源码解读的第一篇文章,本篇我们来探究Java的SPI机制的相关源码。

2 什么是SPI机制

那么,什么是SPI机制呢?

SPI是Service Provider Interface 的简称,即服务提供者接口的意思。根据字面意思我们可能还有点困惑,SPI说白了就是一种扩展机制,我们在相应配置文件中定义好某个接口的实现类,然后再根据这个接口去这个配置文件中加载这个实例类并实例化,其实SPI就是这么一个东西。说到SPI机制,我们最常见的就是Java的SPI机制,此外,还有Dubbo和SpringBoot自定义的SPI机制。

有了SPI机制,那么就为一些框架的灵活扩展提供了可能,而不必将框架的一些实现类写死在代码里面。

那么,某些框架是如何利用SPI机制来做到灵活扩展的呢?下面举几个栗子来阐述下:

  1. JDBC驱动加载案例:利用Java的SPI机制,我们可以根据不同的数据库厂商来引入不同的JDBC驱动包;
  2. SpringBoot的SPI机制:我们可以在spring.factories中加上我们自定义的自动配置类,事件监听器或初始化器等;
  3. Dubbo的SPI机制:Dubbo更是把SPI机制应用的淋漓尽致,Dubbo基本上自身的每个功能点都提供了扩展点,比如提供了集群扩展,路由扩展和负载均衡扩展等差不多接近30个扩展点。如果Dubbo的某个内置实现不符合我们的需求,那么我们只要利用其SPI机制将我们的实现替换掉Dubbo的实现即可。

上面的三个栗子先让我们直观感受下某些框架利用SPI机制是如何做到灵活扩展的。

3 如何使用Java的SPI?

我们先来看看如何使用Java自带的SPI。
先定义一个Developer接口

// Developer.java

package com.ymbj.spi;

public interface Developer {
    void sayHi();
}

再定义两个Developer接口的两个实现类:

// JavaDeveloper.java

package com.ymbj.spi;

public class JavaDeveloper implements Developer {

    @Override
    public void sayHi() {
        System.out.println("Hi, I am a Java Developer.");
    }
}
// PythonDeveloper.java

package com.ymbj.spi;

public class PythonDeveloper implements Developer {

    @Override
    public void sayHi() {
        System.out.println("Hi, I am a Python Developer.");
    }
}

然后再在项目resources目录下新建一个META-INF/services文件夹,然后再新建一个以Developer接口的全限定名命名的文件,文件内容为:

// com.ymbj.spi.Developer文件

com.ymbj.spi.JavaDeveloper
com.ymbj.spi.PythonDeveloper

最后我们再新建一个测试类JdkSPITest

// JdkSPITest.java

public class JdkSPITest {

    @Test
    public void testSayHi() throws Exception {
        ServiceLoader<Developer> serviceLoader = ServiceLoader.load(Developer.class);
        serviceLoader.forEach(Developer::sayHi);
    }
}

运行上面那个测试类,运行成功结果如下截图所示:

由上面简单的Demo我们知道了如何使用Java的SPI机制来实现扩展点加载,下面推荐一篇文章JAVA拾遗--关于SPI机制,通过这篇文章,相信大家对Java的SPI会有一个比较深刻的理解,特别是JDBC加载驱动这方面。

4 Java的SPI机制的源码解读

通过前面扩展Developer接口的简单Demo,我们看到Java的SPI机制实现跟ServiceLoader这个类有关,那么我们先来看下ServiceLoader的类结构代码:

// ServiceLoader实现了【Iterable】接口
public final class ServiceLoader<S>
    implements Iterable<S>{
    private static final String PREFIX = "META-INF/services/";
    // The class or interface representing the service being loaded
    private final Class<S> service;
    // The class loader used to locate, load, and instantiate providers
    private final ClassLoader loader;
    // The access control context taken when the ServiceLoader is created
    private final AccessControlContext acc;
    // Cached providers, in instantiation order
    private LinkedHashMap<String,S> providers = new LinkedHashMap<>();
    // The current lazy-lookup iterator
    private LazyIterator lookupIterator;
    // 构造方法
    private ServiceLoader(Class<S> svc, ClassLoader cl) {
        service = Objects.requireNonNull(svc, "Service interface cannot be null");
        loader = (cl == null) ? ClassLoader.getSystemClassLoader() : cl;
        acc = (System.getSecurityManager() != null) ? AccessController.getContext() : null;
        reload();
    }
    
    // ...暂时省略相关代码
    
    // ServiceLoader的内部类LazyIterator,实现了【Iterator】接口
    // Private inner class implementing fully-lazy provider lookup
    private class LazyIterator
        implements Iterator<S>{
        Class<S> service;
        ClassLoader loader;
        Enumeration<URL> configs = null;
        Iterator<String> pending = null;
        String nextName = null;

        private LazyIterator(Class<S> service, ClassLoader loader) {
            this.service = service;
            this.loader = loader;
        }
        // 覆写Iterator接口的hasNext方法
        public boolean hasNext() {
            // ...暂时省略相关代码
        }
        // 覆写Iterator接口的next方法
        public S next() {
            // ...暂时省略相关代码
        }
        // 覆写Iterator接口的remove方法
        public void remove() {
            // ...暂时省略相关代码
        }

    }

    // 覆写Iterable接口的iterator方法,返回一个迭代器
    public Iterator<S> iterator() {
        // ...暂时省略相关代码
    }

    // ...暂时省略相关代码

}

可以看到,ServiceLoader实现了Iterable接口,覆写其iterator方法能产生一个迭代器;同时ServiceLoader有一个内部类LazyIterator,而LazyIterator又实现了Iterator接口,说明LazyIterator是一个迭代器。

4.1 ServiceLoader.load方法,为加载服务提供者实现类做前期准备

那么我们现在开始探究Java的SPI机制的源码,
先来看JdkSPITest的第一句代码ServiceLoader<Developer> serviceLoader = ServiceLoader.load(Developer.class);中的ServiceLoader.load(Developer.class);的源码:

// ServiceLoader.java

public static <S> ServiceLoader<S> load(Class<S> service) {
    //获取当前线程上下文类加载器 
    ClassLoader cl = Thread.currentThread().getContextClassLoader();
    // 将service接口类和线程上下文类加载器作为参数传入,继续调用load方法
    return ServiceLoader.load(service, cl);
}

我们再来看下ServiceLoader.load(service, cl);方法:

// ServiceLoader.java

public static <S> ServiceLoader<S> load(Class<S> service,
                                        ClassLoader loader)
{
    // 将service接口类和线程上下文类加载器作为构造参数,新建了一个ServiceLoader对象
    return new ServiceLoader<>(service, loader);
}

继续看new ServiceLoader<>(service, loader);是如何构建的?

// ServiceLoader.java

private ServiceLoader(Class<S> svc, ClassLoader cl) {
    service = Objects.requireNonNull(svc, "Service interface cannot be null");
    loader = (cl == null) ? ClassLoader.getSystemClassLoader() : cl;
    acc = (System.getSecurityManager() != null) ? AccessController.getContext() : null;
    reload();
}

可以看到在构建ServiceLoader对象时除了给其成员属性赋值外,还调用了reload方法:

// ServiceLoader.java

public void reload() {
    providers.clear();
    lookupIterator = new LazyIterator(service, loader);
}

可以看到在reload方法中又新建了一个LazyIterator对象,然后赋值给lookupIterator

// ServiceLoader$LazyIterator.java

private LazyIterator(Class<S> service, ClassLoader loader) {
    this.service = service;
    this.loader = loader;
}

可以看到在构建LazyIterator对象时,也只是给其成员变量serviceloader属性赋值呀,我们一路源码跟下来,也没有看到去META-INF/services文件夹加载Developer接口的实现类!这就奇怪了,我们都被ServiceLoaderload方法名骗了。

还记得分析前面的代码时新建了一个LazyIterator对象吗?Lazy顾名思义是的意思,Iterator就是迭代的意思。我们此时猜测那么LazyIterator对象的作用应该就是在迭代的时候再去加载Developer接口的实现类了。

4.2 ServiceLoader.iterator方法,实现服务提供者实现类的懒加载

我们现在再来看JdkSPITest的第二句代码serviceLoader.forEach(Developer::sayHi);,执行这句代码后最终会调用serviceLoaderiterator方法:

// serviceLoader.java

public Iterator<S> iterator() {
    return new Iterator<S>() {

        Iterator<Map.Entry<String,S>> knownProviders
            = providers.entrySet().iterator();

        public boolean hasNext() {
            if (knownProviders.hasNext())
                return true;
            // 调用lookupIterator即LazyIterator的hasNext方法
            // 可以看到是委托给LazyIterator的hasNext方法来实现
            return lookupIterator.hasNext();
        }

        public S next() {
            if (knownProviders.hasNext())
                return knownProviders.next().getValue();
            // 调用lookupIterator即LazyIterator的next方法
            // 可以看到是委托给LazyIterator的next方法来实现
            return lookupIterator.next();
        }

        public void remove() {
            throw new UnsupportedOperationException();
        }

    };
}

可以看到调用serviceLoaderiterator方法会返回一个匿名的迭代器对象,而这个匿名迭代器对象其实相当于一个门面类,其覆写的hasNextnext方法又分别委托LazyIteratorhasNextnext方法来实现了。

我们继续调试,发现接下来会进入LazyIteratorhasNext方法:

// serviceLoader$LazyIterator.java

public boolean hasNext() {
    if (acc == null) {
        // 调用hasNextService方法
        return hasNextService();
    } else {
        PrivilegedAction<Boolean> action = new PrivilegedAction<Boolean>() {
            public Boolean run() { return hasNextService(); }
        };
        return AccessController.doPrivileged(action, acc);
    }
}

继续跟进hasNextService方法:

// serviceLoader$LazyIterator.java

private boolean hasNextService() {
    if (nextName != null) {
        return true;
    }
    if (configs == null) {
        try {
            // PREFIX = "META-INF/services/"
            // service.getName()即接口的全限定名
            // 还记得前面的代码构建LazyIterator对象时已经给其成员属性service赋值吗
            String fullName = PREFIX + service.getName();
            // 加载META-INF/services/目录下的接口文件中的服务提供者类
            if (loader == null)
                configs = ClassLoader.getSystemResources(fullName);
            else
                // 还记得前面的代码构建LazyIterator对象时已经给其成员属性loader赋值吗
                configs = loader.getResources(fullName);
        } catch (IOException x) {
            fail(service, "Error locating configuration files", x);
        }
    }
    while ((pending == null) || !pending.hasNext()) {
        if (!configs.hasMoreElements()) {
            return false;
        }
        // 返回META-INF/services/目录下的接口文件中的服务提供者类并赋值给pending属性
        pending = parse(service, configs.nextElement());
    }
    // 然后取出一个全限定名赋值给LazyIterator的成员变量nextName
    nextName = pending.next();
    return true;
}

可以看到在执行LazyIteratorhasNextService方法时最终将去META-INF/services/目录下加载接口文件的内容即加载服务提供者实现类的全限定名,然后取出一个服务提供者实现类的全限定名赋值给LazyIterator的成员变量nextName。到了这里,我们就明白了LazyIterator的作用真的是懒加载,在用到的时候才会去加载。

思考:为何这里要用懒加载呢?懒加载的思想是怎样的呢?懒加载有啥好处呢?你还能举出其他懒加载的案例吗?

同样,执行完LazyIteratorhasNext方法后,会继续执行LazyIteratornext方法:

// serviceLoader$LazyIterator.java

public S next() {
    if (acc == null) {
        // 调用nextService方法
        return nextService();
    } else {
        PrivilegedAction<S> action = new PrivilegedAction<S>() {
            public S run() { return nextService(); }
        };
        return AccessController.doPrivileged(action, acc);
    }
}

我们继续跟进nextService方法:

// serviceLoader$LazyIterator.java

private S nextService() {
    if (!hasNextService())
        throw new NoSuchElementException();
    // 还记得在hasNextService方法中为nextName赋值过服务提供者实现类的全限定名吗
    String cn = nextName;
    nextName = null;
    Class<?> c = null;
    try {
        // 【1】去classpath中根据传入的类加载器和服务提供者实现类的全限定名去加载服务提供者实现类
        c = Class.forName(cn, false, loader);
    } catch (ClassNotFoundException x) {
        fail(service,
             "Provider " + cn + " not found");
    }
    if (!service.isAssignableFrom(c)) {
        fail(service,
             "Provider " + cn  + " not a subtype");
    }
    try {
        // 【2】实例化刚才加载的服务提供者实现类,并进行转换
        S p = service.cast(c.newInstance());
        // 【3】最终将实例化后的服务提供者实现类放进providers集合
        providers.put(cn, p);
        return p;
    } catch (Throwable x) {
        fail(service,
             "Provider " + cn + " could not be instantiated",
             x);
    }
    throw new Error();          // This cannot happen
}

可以看到LazyIteratornextService方法最终将实例化之前加载的服务提供者实现类,并放进providers集合中,随后再调用服务提供者实现类的方法(比如这里指JavaDevelopersayHi方法)。注意,这里是加载一个服务提供者实现类后,若main函数中有调用该服务提供者实现类的方法的话,紧接着会调用其方法;然后继续实例化下一个服务提供者类。

设计模式:可以看到,Java的SPI机制实现代码中应用了迭代器模式,迭代器模式屏蔽了各种存储对象的内部结构差异,提供一个统一的视图来遍历各个存储对象(存储对象可以为集合,数组等)。java.util.Iterator也是迭代器模式的实现:同时Java的各个集合类一般实现了Iterable接口,实现了其iterator方法从而获得Iterator接口的实现类对象(一般为集合内部类),然后再利用Iterator对象的实现类的hasNextnext方法来遍历集合元素。

5 JDBC驱动加载源码解读

前面分析了Java的SPI机制的源码实现,现在我们再来看下Java的SPI机制的实际案例的应用。

我们都知道,JDBC驱动加载是Java的SPI机制的典型应用案例。JDBC主要提供了一套接口规范,而这套规范的api在java的核心库(rt.jar)中实现,而不同的数据库厂商只要编写符合这套JDBC接口规范的驱动代码,那么就可以用Java语言来连接数据库了。

java的核心库(rt.jar)中跟JDBC驱动加载的最核心的接口和类分别是java.sql.Driver接口和java.sql.DriverManager类,其中java.sql.Driver是各个数据库厂商的驱动类要实现的接口,而DriverManager是用来管理数据库的驱动类的,值得注意的是DriverManager这个类有一个registeredDrivers集合属性,用来存储数据库的驱动类。

// DriverManager.java

// List of registered JDBC drivers
private final static CopyOnWriteArrayList<DriverInfo> registeredDrivers = new CopyOnWriteArrayList<>();

这里以加载Mysql驱动为例来分析JDBC驱动加载的源码。

我们的项目引入mysql-connector-java依赖(这里的版本是5.1.47)后,那么Mysql的驱动实现类文件如下图所示:


可以看到Mysql的驱动包中有两个Driver驱动类,分别是com.mysql.jdbc.Drivercom.mysql.fabric.jdbc.FabricMySQLDriver,默认情况下一般我们只用到前者。

5.1 利用Java的SPI加载Mysql的驱动类

那么接下来我们就来探究下JDBC驱动加载的代码是如何实现的。

先来看一下一个简单的JDBC的测试代码:

// JdbcTest.java

public class JdbcTest {
    public static void main(String[] args) {
        Connection connection = null;  
        Statement statement = null;
        ResultSet rs = null;

        try {
            // 注意:在JDBC 4.0规范中,这里可以不用再像以前那样编写显式加载数据库的代码了
            // Class.forName("com.mysql.jdbc.Driver");
            // 获取数据库连接,注意【这里将会加载mysql的驱动包】
            /***************【主线,切入点】****************/
            connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/jdbc", "root", "123456");
            // 创建Statement语句
            statement = connection.createStatement();
            // 执行查询语句
            rs = statement.executeQuery("select * from user");
            // 遍历查询结果集
            while(rs.next()){
                String name = rs.getString("name");
                System.out.println(name);
            }
        } catch(Exception e) {
            e.printStackTrace();
        } finally {
            // ...省略释放资源的代码
        }
    }
}

JdbcTestmain函数调用DriverManagergetConnection方法时,此时必然会先执行DriverManager类的静态代码块的代码,然后再执行getConnection方法,那么先来看下DriverManager的静态代码块:

// DriverManager.java

static {
    // 加载驱动实现类
    loadInitialDrivers();
    println("JDBC DriverManager initialized");
}

继续跟进loadInitialDrivers的代码:

// DriverManager.java

private static void loadInitialDrivers() {
    String drivers;
    try {
        drivers = AccessController.doPrivileged(new PrivilegedAction<String>() {
            public String run() {
                return System.getProperty("jdbc.drivers");
            }
        });
    } catch (Exception ex) {
        drivers = null;
    }
    AccessController.doPrivileged(new PrivilegedAction<Void>() {
        public Void run() {
            // 来到这里,是不是感觉似曾相识,对,没错,我们在前面的JdkSPITest代码中执行过下面的两句代码
            // 这句代码前面已经分析过,这里不会真正加载服务提供者实现类
            // 而是实例化一个ServiceLoader对象且实例化一个LazyIterator对象用于懒加载
            ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);
            // 调用ServiceLoader的iterator方法,在迭代的同时,也会去加载并实例化META-INF/services/java.sql.Driver文件
            // 的com.mysql.jdbc.Driver和com.mysql.fabric.jdbc.FabricMySQLDriver两个驱动类
            /****************【主线,重点关注】**********************/
            Iterator<Driver> driversIterator = loadedDrivers.iterator();
            try{
                while(driversIterator.hasNext()) {
                    driversIterator.next();
                }
            } catch(Throwable t) {
            // Do nothing
            }
            return null;
        }
    });

    println("DriverManager.initialize: jdbc.drivers = " + drivers);

    if (drivers == null || drivers.equals("")) {
        return;
    }
    String[] driversList = drivers.split(":");
    println("number of Drivers:" + driversList.length);
    for (String aDriver : driversList) {
        try {
            println("DriverManager.Initialize: loading " + aDriver);
            Class.forName(aDriver, true,
                    ClassLoader.getSystemClassLoader());
        } catch (Exception ex) {
            println("DriverManager.Initialize: load failed: " + ex);
        }
    }
}

在上面的代码中,我们可以看到Mysql的驱动类加载主要是利用Java的SPI机制实现的,即利用ServiceLoader来实现加载并实例化Mysql的驱动类。

5.2 注册Mysql的驱动类

那么,上面的代码只是Mysql驱动类的加载和实例化,那么,驱动类又是如何被注册进DriverManagerregisteredDrivers集合的呢?

这时,我们注意到com.mysql.jdbc.Driver类里面也有个静态代码块,即实例化该类时肯定会触发该静态代码块代码的执行,那么我们直接看下这个静态代码块做了什么事情:

// com.mysql.jdbc.Driver.java

// Register ourselves with the DriverManager
static {
    try {
        // 将自己注册进DriverManager类的registeredDrivers集合
        java.sql.DriverManager.registerDriver(new Driver());
    } catch (SQLException E) {
        throw new RuntimeException("Can't register driver!");
    }
}

可以看到,原来就是Mysql驱动类com.mysql.jdbc.Driver在实例化的时候,利用执行其静态代码块的时机时将自己注册进DriverManagerregisteredDrivers集合中。

好,继续跟进DriverManagerregisterDriver方法:

// DriverManager.java

public static synchronized void registerDriver(java.sql.Driver driver)
    throws SQLException {
    // 继续调用registerDriver方法
    registerDriver(driver, null);
}

public static synchronized void registerDriver(java.sql.Driver driver,
        DriverAction da)
    throws SQLException {

    /* Register the driver if it has not already been added to our list */
    if(driver != null) {
        // 将driver驱动类实例注册进registeredDrivers集合
        registeredDrivers.addIfAbsent(new DriverInfo(driver, da));
    } else {
        // This is for compatibility with the original DriverManager
        throw new NullPointerException();
    }
    println("registerDriver: " + driver);
}

分析到了这里,我们就明白了Java的SPI机制是如何加载Mysql的驱动类的并如何将Mysql的驱动类注册进DriverManagerregisteredDrivers集合中的。

5.3 使用之前注册的Mysql驱动类连接数据库

既然Mysql的驱动类已经被注册进来了,那么何时会被用到呢?

我们要连接Mysql数据库,自然需要用到Mysql的驱动类,对吧。此时我们回到JDBC的测试代码JdbcTest类的connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/jdbc", "root", "123456");这句代码中,看一下getConnection的源码:

// DriverManager.java

@CallerSensitive
public static Connection getConnection(String url,
    String user, String password) throws SQLException {
    java.util.Properties info = new java.util.Properties();

    if (user != null) {
        info.put("user", user);
    }
    if (password != null) {
        info.put("password", password);
    }
    // 继续调用getConnection方法来连接数据库
    return (getConnection(url, info, Reflection.getCallerClass()));
}

继续跟进getConnection方法:

// DriverManager.java

private static Connection getConnection(
        String url, java.util.Properties info, Class<?> caller) throws SQLException {
        
        ClassLoader callerCL = caller != null ? caller.getClassLoader() : null;
        synchronized(DriverManager.class) {
            // synchronize loading of the correct classloader.
            if (callerCL == null) {
                callerCL = Thread.currentThread().getContextClassLoader();
            }
        }
        if(url == null) {
            throw new SQLException("The url cannot be null", "08001");
        }
        println("DriverManager.getConnection(\"" + url + "\")");
        // Walk through the loaded registeredDrivers attempting to make a connection.
        // Remember the first exception that gets raised so we can reraise it.
        SQLException reason = null;
        // 遍历registeredDrivers集合,注意之前加载的Mysql驱动类实例被注册进这个集合
        for(DriverInfo aDriver : registeredDrivers) {
            // If the caller does not have permission to load the driver then
            // skip it.
            // 判断有无权限
            if(isDriverAllowed(aDriver.driver, callerCL)) {
                try {
                    println("    trying " + aDriver.driver.getClass().getName());
                    // 利用Mysql驱动类来连接数据库
                    /*************【主线,重点关注】*****************/
                    Connection con = aDriver.driver.connect(url, info);
                    // 只要连接上,那么加载的其余驱动类比如FabricMySQLDriver将会忽略,因为下面直接返回了
                    if (con != null) {
                        // Success!
                        println("getConnection returning " + aDriver.driver.getClass().getName());
                        return (con);
                    }
                } catch (SQLException ex) {
                    if (reason == null) {
                        reason = ex;
                    }
                }

            } else {
                println("    skipping: " + aDriver.getClass().getName());
            }

        }

        // if we got here nobody could connect.
        if (reason != null)    {
            println("getConnection failed: " + reason);
            throw reason;
        }

        println("getConnection: no suitable driver found for "+ url);
        throw new SQLException("No suitable driver found for "+ url, "08001");
    }

可以看到,DriverManagergetConnection方法会从registeredDrivers集合中拿出刚才加载的Mysql驱动类来连接数据库。

好了,到了这里,JDBC驱动加载的源码就基本分析完了。

6 线程上下文类加载器

前面基本分析完了JDBC驱动加载的源码,但是还有一个很重要的知识点还没讲解,那就是破坏类加载机制的双亲委派模型的线程上下文类加载器

我们都知道,JDBC规范的相关类(比如前面的java.sql.Driverjava.sql.DriverManager)都是在Jdk的rt.jar包下,意味着这些类将由启动类加载器(BootstrapClassLoader)加载;而Mysql的驱动类由外部数据库厂商实现,当驱动类被引进项目时也是位于项目的classpath中,此时启动类加载器肯定是不可能加载这些驱动类的呀,此时该怎么办?

由于类加载机制的双亲委派模型在这方面的缺陷,因此只能打破双亲委派模型了。因为项目classpath中的类是由应用程序类加载器(AppClassLoader)来加载,所以我们可否"逆向"让启动类加载器委托应用程序类加载器去加载这些外部数据库厂商的驱动类呢?如果可以,我们怎样才能做到让启动类加载器委托应用程序类加载器去加载
classpath中的类呢?

答案肯定是可以的,我们可以将应用程序类加载器设置进线程里面,即线程里面新定义一个类加载器的属性contextClassLoader,然后在某个时机将应用程序类加载器设置进线程的contextClassLoader这个属性里面,如果没有设置的话,那么默认就是应用程序类加载器。然后启动类加载器去加载java.sql.Driverjava.sql.DriverManager等类时,同时也会从当前线程中取出contextClassLoader即应用程序类加载器去classpath中加载外部厂商提供的JDBC驱动类。因此,通过破坏类加载机制的双亲委派模型,利用线程上下文类加载器完美的解决了该问题。

此时我们再回过头来看下在加载Mysql驱动时是什么时候获取的线程上下文类加载器呢?

答案就是在DriverManagerloadInitialDrivers方法调用了ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);这句代码,而取出线程上下文类加载器就是在ServiceLoaderload方法中取出:


public static <S> ServiceLoader<S> load(Class<S> service) {
    // 取出线程上下文类加载器取出的是contextClassLoader,而contextClassLoader装的应用程序类加载器
    ClassLoader cl = Thread.currentThread().getContextClassLoader();
    // 把刚才取出的线程上下文类加载器作为参数传入,用于后去加载classpath中的外部厂商提供的驱动类
    return ServiceLoader.load(service, cl);
}

因此,到了这里,我们就明白了线程上下文类加载器在加载JDBC驱动包中充当的作用了。此外,我们应该知道,Java的绝大部分涉及SPI的加载都是利用线程上下文类加载器来完成的,比如JNDI,JCE,JBI等。

扩展:打破类加载机制的双亲委派模型的还有代码的热部署等,另外,Tomcat的类加载机制也值得一读。

注:若有些小伙伴对类加载机制的双亲委派模型不清楚的话,推荐完全理解双亲委派模型与自定义 ClassLoader这篇文了解下。

7 扩展:Dubbo的SPI机制

前面也讲到Dubbo框架身上处处是SPI机制的应用,可以说处处都是扩展点,真的是把SPI机制应用的淋漓尽致。但是Dubbo没有采用默认的Java的SPI机制,而是自己实现了一套SPI机制。

那么,Dubbo为什么没有采用Java的SPI机制呢?

原因主要有两个:

  1. Java的SPI机制会一次性实例化扩展点所有实现,如果有扩展实现初始化很耗时,但如果没用上也加载,会很浪费资源;
  2. Java的SPI机制没有Ioc和AOP的支持,因此Dubbo用了自己的SPI机制:增加了对扩展点IoC和AOP的支持,一个扩展点可以直接setter注入其它扩展点。

由于以上原因,Dubbo自定义了一套SPI机制,用于加载自己的扩展点。关于Dubbo的SPI机制这里不再详述,感兴趣的小伙伴们可以去Dubbo官网看看是如何扩展Dubbo的SPI的?还有其官网也有Duboo的SPI的源码分析文章。

8 小结

好了,Java的SPI机制就解读到这里了,先将前面的知识点再总结下:

  1. Java的SPI机制的使用;
  2. Java的SPI机制的原理;
  3. JDBC驱动的加载原理;
  4. 线程上下文类加载器在JDBC驱动加载中的作用;
  5. 简述了Duboo的SPI机制。

原创不易,帮忙点个赞呗!

由于笔者水平有限,若文中有错误还请指出,谢谢。

参考

1,http://dubbo.apache.org/zh-cn/docs/source_code_guide/dubbo-spi.html

2,《深入理解Java虚拟机》

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
10天前
|
数据采集 人工智能 Java
Java产科专科电子病历系统源码
产科专科电子病历系统,全结构化设计,实现产科专科电子病历与院内HIS、LIS、PACS信息系统、区域妇幼信息平台的三级互联互通,系统由门诊系统、住院系统、数据统计模块三部分组成,它管理了孕妇从怀孕开始到生产结束42天一系列医院保健服务信息。
26 4
|
16天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
45 2
|
21天前
|
Java 编译器
探索Java中的异常处理机制
【10月更文挑战第35天】在Java的世界中,异常是程序运行过程中不可避免的一部分。本文将通过通俗易懂的语言和生动的比喻,带你了解Java中的异常处理机制,包括异常的类型、如何捕获和处理异常,以及如何在代码中有效地利用异常处理来提升程序的健壮性。让我们一起走进Java的异常世界,学习如何优雅地面对和解决问题吧!
|
22天前
|
安全 Java 编译器
JDK 10中的局部变量类型推断:Java编程的简化与革新
JDK 10引入的局部变量类型推断通过`var`关键字简化了代码编写,提高了可读性。编译器根据初始化表达式自动推断变量类型,减少了冗长的类型声明。虽然带来了诸多优点,但也有一些限制,如只能用于局部变量声明,并需立即初始化。这一特性使Java更接近动态类型语言,增强了灵活性和易用性。
99 53
|
14天前
|
IDE Java 编译器
开发 Java 程序一定要安装 JDK 吗
开发Java程序通常需要安装JDK(Java Development Kit),因为它包含了编译、运行和调试Java程序所需的各种工具和环境。不过,某些集成开发环境(IDE)可能内置了JDK,或可使用在线Java编辑器,无需单独安装。
|
21天前
|
人工智能 监控 数据可视化
Java智慧工地信息管理平台源码 智慧工地信息化解决方案SaaS源码 支持二次开发
智慧工地系统是依托物联网、互联网、AI、可视化建立的大数据管理平台,是一种全新的管理模式,能够实现劳务管理、安全施工、绿色施工的智能化和互联网化。围绕施工现场管理的人、机、料、法、环五大维度,以及施工过程管理的进度、质量、安全三大体系为基础应用,实现全面高效的工程管理需求,满足工地多角色、多视角的有效监管,实现工程建设管理的降本增效,为监管平台提供数据支撑。
34 3
|
20天前
|
Java 数据库连接 开发者
Java中的异常处理机制及其最佳实践####
在本文中,我们将探讨Java编程语言中的异常处理机制。通过深入分析try-catch语句、throws关键字以及自定义异常的创建与使用,我们旨在揭示如何有效地管理和响应程序运行中的错误和异常情况。此外,本文还将讨论一些最佳实践,以帮助开发者编写更加健壮和易于维护的代码。 ####
|
26天前
|
运维 自然语言处理 供应链
Java云HIS医院管理系统源码 病案管理、医保业务、门诊、住院、电子病历编辑器
通过门诊的申请,或者直接住院登记,通过”护士工作站“分配患者,完成后,进入医生患者列表,医生对应开具”长期医嘱“和”临时医嘱“,并在电子病历中,记录病情。病人出院时,停止长期医嘱,开具出院医嘱。进入出院审核,审核医嘱与住院通过后,病人结清缴费,完成出院。
61 3
|
3月前
|
Java
安装JDK18没有JRE环境的解决办法
安装JDK18没有JRE环境的解决办法
351 3
|
4月前
|
Java 关系型数据库 MySQL
"解锁Java Web传奇之旅:从JDK1.8到Tomcat,再到MariaDB,一场跨越数据库的冒险安装盛宴,挑战你的技术极限!"
【8月更文挑战第19天】在Linux上搭建Java Web应用环境,需安装JDK 1.8、Tomcat及MariaDB。本指南详述了使用apt-get安装OpenJDK 1.8的方法,并验证其版本。接着下载与解压Tomcat至`/usr/local/`目录,并启动服务。最后,通过apt-get安装MariaDB,设置基本安全配置。完成这些步骤后,即可验证各组件的状态,为部署Java Web应用打下基础。
61 1