PostgreSQL PostGIS 性能提升 - by new GEOS代码

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 标签 PostgreSQL , PostGIS , geos 背景 http://lin-ear-th-inking.blogspot.com/2019/02/betterfaster-stpointonsurface-for.html 使用GEOS新的代码,提升PostGIS重计算的函数性能。 The improved ST_PointOnSurface runs 13 times

标签

PostgreSQL , PostGIS , geos


背景

http://lin-ear-th-inking.blogspot.com/2019/02/betterfaster-stpointonsurface-for.html

使用GEOS新的代码,提升PostGIS重计算的函数性能。 The improved ST_PointOnSurface runs 13 times faster than the old code.

And now for the final chapter in the saga of improving For those who missed the first two episodes, the series began with for the venerable JTS Geometry.interiorPoint() for polygons algorithm.
Episode 2 travelled deep into the wilds of C++ with a .
The series finale shows how this results in greatly improved performance of PostGIS .
The dataset is a convenient test case, since it has lots of large polygons (shown here with interior points computed).
The query is about as simple as it gets:Here's the query timings comparison, using the improved GEOS code and the previous implementation:
As expected, there is a dramatic improvement in performance.
The improved ST_PointOnSurface runs 13 times faster than the old code.
And it's now as fast as ST_Centroid.
It's also more robust and tolerant of invalid input (although this test doesn't show it).
This should show up in PostGIS in the fall release (PostGIS 3 / GEOS 3.8).
On to the next improvement... (and also gotta update the and the !)
by Dr JTS (noreply@blogger.com) at March 01, 2019 07:02 PM

 

免费领取阿里云RDS PostgreSQL实例、ECS虚拟机

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
2月前
|
存储 SQL 关系型数据库
Mysql学习笔记(二):数据库命令行代码总结
这篇文章是关于MySQL数据库命令行操作的总结,包括登录、退出、查看时间与版本、数据库和数据表的基本操作(如创建、删除、查看)、数据的增删改查等。它还涉及了如何通过SQL语句进行条件查询、模糊查询、范围查询和限制查询,以及如何进行表结构的修改。这些内容对于初学者来说非常实用,是学习MySQL数据库管理的基础。
139 6
|
4月前
|
缓存 关系型数据库 数据库
PostgreSQL性能
【8月更文挑战第26天】PostgreSQL性能
76 1
|
2月前
|
存储 关系型数据库 MySQL
Key_Value 形式 存储_5级省市城乡划分代码 (mysql 8.0 实例)
本文介绍了如何使用MySQL8.0数据库中的Key_Value形式存储全国统计用区划代码和城乡划分代码(5级),包括导入数据、通过数学函数提取省市区信息,以及查询5级行政区划的详细数据。
39 0
|
3月前
|
缓存 关系型数据库 数据库
如何优化 PostgreSQL 数据库性能?
如何优化 PostgreSQL 数据库性能?
159 2
|
2月前
|
关系型数据库 PostgreSQL Docker
PostgreSQL - 01 PostgreSQL + PostGIS + Docker 空间计算!判断坐标点是否在某个区域中 POINT MULTIPOLYGON ST_Contains
PostgreSQL - 01 PostgreSQL + PostGIS + Docker 空间计算!判断坐标点是否在某个区域中 POINT MULTIPOLYGON ST_Contains
47 0
|
2月前
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
|
3月前
|
缓存 关系型数据库 数据库
PostgreSQL的性能
PostgreSQL的性能
190 2
|
3月前
|
关系型数据库 数据库 网络虚拟化
Docker环境下重启PostgreSQL数据库服务的全面指南与代码示例
由于时间和空间限制,我将在后续的回答中分别涉及到“Python中采用lasso、SCAD、LARS技术分析棒球运动员薪资的案例集锦”以及“Docker环境下重启PostgreSQL数据库服务的全面指南与代码示例”。如果你有任何一个问题的优先顺序或需要立即回答的,请告知。
77 0
|
4月前
|
缓存 关系型数据库 数据库
PostgreSQL 查询性能
【8月更文挑战第5天】PostgreSQL 查询性能
88 8
|
4月前
|
关系型数据库 Java 数据库
PostgreSQL性能
【8月更文挑战第5天】PostgreSQL性能
132 7