MySQL 的覆盖索引与回表

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 索引覆盖和回表是MySQL的高级知识点,理解掌握它们可以让你写出更高级的SQL。

两大类索引

使用的存储引擎:MySQL5.7 InnoDB

聚簇索引

* 如果表设置了主键,则主键就是聚簇索引
* 如果表没有主键,则会默认第一个NOT NULL,且唯一(UNIQUE)的列作为聚簇索引
* 以上都没有,则会默认创建一个隐藏的row_id作为聚簇索引

InnoDB的聚簇索引的叶子节点存储的是行记录(其实是页结构,一个页包含多行数据),InnoDB必须要有至少一个聚簇索引。

由此可见,使用聚簇索引查询会很快,因为可以直接定位到行记录。

普通索引

普通索引也叫二级索引,除聚簇索引外的索引,即非聚簇索引。

InnoDB的普通索引叶子节点存储的是主键(聚簇索引)的值,而MyISAM的普通索引存储的是记录指针。

示例

建表

mysql> create table user(
    -> id int(10) auto_increment,
    -> name varchar(30),
    -> age tinyint(4),
    -> primary key (id),
    -> index idx_age (age)
    -> )engine=innodb charset=utf8mb4;

id 字段是聚簇索引,age 字段是普通索引(二级索引)

填充数据

insert into user(name,age) values('张三',30);
insert into user(name,age) values('李四',20);
insert into user(name,age) values('王五',40);
insert into user(name,age) values('刘八',10);

mysql> select * from user;
+----+--------+------+
| id | name  | age |
+----+--------+------+
| 1 | 张三  |  30 |
| 2 | 李四  |  20 |
| 3 | 王五  |  40 |
| 4 | 刘八  |  10 |
+----+--------+------+

索引存储结构

id 是主键,所以是聚簇索引,其叶子节点存储的是对应行记录的数据

MySQL 的覆盖索引与回表
聚簇索引(ClusteredIndex)

age 是普通索引(二级索引),非聚簇索引,其叶子节点存储的是聚簇索引的的值

MySQL 的覆盖索引与回表
普通索引(secondaryIndex)

如果查询条件为主键(聚簇索引),则只需扫描一次B+树即可通过聚簇索引定位到要查找的行记录数据。

如:select * from user where id = 1;

MySQL 的覆盖索引与回表
聚簇索引查找过程

如果查询条件为普通索引(非聚簇索引),需要扫描两次B+树,第一次扫描通过普通索引定位到聚簇索引的值,然后第二次扫描通过聚簇索引的值定位到要查找的行记录数据。
如:select * from user where age = 30;

1. 先通过普通索引 age=30 定位到主键值 id=1
2. 再通过聚集索引 id=1 定位到行记录数据

MySQL 的覆盖索引与回表
普通索引查找过程第一步

MySQL 的覆盖索引与回表
普通索引查找过程第二步

回表查询

先通过普通索引的值定位聚簇索引值,再通过聚簇索引的值定位行记录数据,需要扫描两次索引B+树,它的性能较扫一遍索引树更低。

索引覆盖

只需要在一棵索引树上就能获取SQL所需的所有列数据,无需回表,速度更快。

例如:select id,age from user where age = 10;

如何实现覆盖索引

常见的方法是:将被查询的字段,建立到联合索引里去。

1、如实现:select id,age from user where age = 10;

explain分析:因为age是普通索引,使用到了age索引,通过一次扫描B+树即可查询到相应的结果,这样就实现了覆盖索引

MySQL 的覆盖索引与回表

2、实现:select id,age,name from user where age = 10;

explain分析:age是普通索引,但name列不在索引树上,所以通过age索引在查询到id和age的值后,需要进行回表再查询name的值。此时的Extra列的NULL表示进行了回表查询

MySQL 的覆盖索引与回表

为了实现索引覆盖,需要建组合索引idx_age_name(age,name)

drop index idx_age on user;
create index idx_age_name on user(`age`,`name`);

explain分析:此时字段age和name是组合索引idx_age_name,查询的字段id、age、name的值刚刚都在索引树上,只需扫描一次组合索引B+树即可,这就是实现了索引覆盖,此时的Extra字段为Using index表示使用了索引覆盖。

MySQL 的覆盖索引与回表

哪些场景适合使用索引覆盖来优化SQL

全表count查询优化

mysql> create table user(
    -> id int(10) auto_increment,
    -> name varchar(30),
    -> age tinyint(4),
    -> primary key (id),
    -> )engine=innodb charset=utf8mb4;

例如:select count(age) from user;

MySQL 的覆盖索引与回表

使用索引覆盖优化:创建age字段索引

create index idx_age on user(age);

MySQL 的覆盖索引与回表

列查询回表优化

前文在描述索引覆盖使用的例子就是

例如:select id,age,name from user where age = 10;

使用索引覆盖:建组合索引idx_age_name(age,name)即可

分页查询

例如:select id,age,name from user order by age limit 100,2;

因为name字段不是索引,所以在分页查询需要进行回表查询,此时Extra为Using filesort文件排序,查询性能低下。

MySQL 的覆盖索引与回表

使用索引覆盖:建组合索引idx_age_name(age,name)

MySQL 的覆盖索引与回表

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
5天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
42 9
|
9天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
50 18
|
2天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
23 8
|
8天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
17 7
|
7天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
27 5
|
12天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
86 15
|
6天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
13天前
|
关系型数据库 MySQL 数据库
数据库数据恢复—MYSQL数据库文件损坏的数据恢复案例
mysql数据库文件ibdata1、MYI、MYD损坏。 故障表现:1、数据库无法进行查询等操作;2、使用mysqlcheck和myisamchk无法修复数据库。
|
17天前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。
|
25天前
|
关系型数据库 MySQL 数据库
GBase 数据库如何像MYSQL一样存放多行数据
GBase 数据库如何像MYSQL一样存放多行数据

推荐镜像

更多
下一篇
DataWorks