手淘架构组最新实践 | iOS基于静态库插桩的⼆进制重排启动优化

简介:

image
作者|谢俊逸(极目)
出品|阿里巴巴新零售淘系技术部
本文知识点提炼:
1、APP 启动时 PageFault 的性能分析
2、静态库插桩重排方案的技术原理

背景

近期抖音和Facebook分享了自己通过二进制重排优化启动时间的方案,手淘iOS架构团队也对二进制重排进行了研究,由于手淘工程模块已经二进制化,因此实现了一套基于静态库插桩的重排方案

APP 启动 和 PageFault

当我们向操作系统申请内存时,操作系统并不是直接分配给我们物理内存,而是只标记当前进程拥有该段内存,当真正使用这段段内存时才会分配。这种延迟分配物理内存的方式就通过page fault机制来实现的。当我们访问一个内存地址时,如果该地址非法,或者我们对其没有访问权限,或者该地址对应的物理内存还未分配,cpu都会生成一个page fault,进而执行操作系统的page fault handler。如果是因为还未分配物理内存,操作系统会立即分配物理内存给当前进程,然后重试产生这个page fault的内存访问指令。
image

App在启动时,需要执行各种函数,我们需要读取TEXT段代码到物理内存中,这个过程会发生缺⻚中断,由于启动时所需要执行的代码分布在TEXT段的各个部分,会读取很多⻚面,导致启动时Page Fault 数量非常多。与直接访问物理内存不同,page fault过程大部分是由软件完成的,消耗时间比较久,所以是影响启动性能的一个关键指标。

例如下图中,手淘启动时首先的调用的几个方法 会分布在虚拟内存的各个⻚面中, 执行这些方法时,需要从读取到物理内容中,就会产生多次page fault

如果能将启动阶段需要的读取代码集中排布,将这些方法全都放到相邻的区域中,我们读取这些方法可能就只需要极少的page fault次数。可以减少不必要的page fault时间。达到优化启动时间的效果。

重排前后的函数在页面的布局对比:
image

重排方案

如何获取方法的执行顺序

为了生成order_file, 我们需要确定应用启动时方法的执行顺序。之前抖音和facebook都分享过自己的方案,在实际操作的过程中,我们发现抖音和 facebook 的方案并不适用于手淘。

抖音通过静态扫描和运行时Trace等方法确定 order_file,该方案无法覆盖 initialize、block 和 C++通过寄存器的间接函数调用静态扫描不出来调用。

facebook 分享过通过 llvm 插桩的确定 order_file 的方案,需要使用源码重新打包。由于手淘几乎全是已经编译好的二进制模块,在手淘使用该方案不现实。

只能想其他办法...

手淘之前已经做过pod预编译,我和师兄念纪想到了是否可以通过在汇编层面对pod编译后的静态库进行插桩。在启动时,插桩后的方法都会调用记录方法,从而获得启动方法的执行顺序。在参考了离青对汇编插桩的研究后,确定了静态库插桩的实现方案。

静态库插桩

我们编译过的静态库由.o文件组成,我们可以对.o中的函数代码进行修改,在每个函数的开头插入调用我们指定记录函数的指令。

举个例子:

插入前-[MyApp window]:的汇编代码

-[MyApp window]:
0000000000002d88 adrp x8, #0x
0000000000002d8c ldrsw x8, [x8, #0xf18]
; 0x2f18@PAGEOFF, _OBJC_IVAR_$_MyApp._window
0000000000002d90 ldr x0, [x0, x8]
0000000000002d94 ret

插入后的 汇编代码,可以看到 增加了跳转到_record_method的指令,并且补上了prologue和
epilogue。

-[MyApp window]:
0000000000002ebc stp x29, x30, [sp, #-0x10]!
0000000000002ec0 mov x29, sp
0000000000002ec4 bl _record_method
0000000000002ec8 ldp x29, x30, [sp], #0x
0000000000002ecc adrp x8, #0x
0000000000002ed0 ldrsw x8, [x8, #0xc0]
0000000000002ed4 ldr x0, [x0, x8]
0000000000002ed8 ret

生成order file

linkmap记录了连接过程中的相关信息。其中包含链接用到的symbol相关的信息。通过pc address减去slide得到的地址,我们可以在linkmap中找到对应的symbol.

address = pc - slide. // 因为ASLR, APP 可执行文件随机载入的原因,需要处理一下偏移
量。

我们需要将之前记录的地址转换成对应的符号,为了真实还原线上的执行环境,我们只是在app中简单地的记录了 pc地址 和 Image的偏移量。通过解析linkmap,获取函数的地址区间, 得到距离address最近的symbol,生成order_file。

linkmap 文件:

# Symbols:
# Address Size File Name
0x100001630 0x00000039 [ 2] -[ViewController viewDidLoad]
0x100001670 0x00000092 [ 3] _main
0x100001710 0x00000080 [ 4] -[AppDelegate application:didFinishLaunchingWithOptions:]
0x100001790 0x00000040 [ 4] -[AppDelegate applicationWillResignActive:]
0x1000017D0 0x00000040 [ 4] -[AppDelegate applicationDidEnterBackground:]
0x100001810 0x00000040 [ 4] -[AppDelegate applicationWillEnterForeground:]
0x100001850 0x00000040 [ 4] -[AppDelegate applicationDidBecomeActive:]
0x100001890 0x00000040 [ 4] -[AppDelegate applicationWillTerminate:]

更改符号的排列顺序

默认情况下,ld链接器会按照链接的顺序将各个.o文件的数据重新布局生成可执行文件。ld链接器提供-order-file选项操控数据排列的顺序。在Xcode中可以通过Order File选项指定符号排序文件。

//Order file 内容例子:
+[xxxxx1 load]
+[xxxxx2 swizzleResumeAndSuspendMethodForClass:]
+[xxxxx3 load]
+[xxxxx4 initialize]___
+[xxxxx5 initialize]_block_invoke
+[xxxxx6 initialize]___
+[xxxxx7 initialize]_block_invoke
...

优化效果

通过精准的启动函数重排,最后重排效果还是很可观的,在iPhone6上优化了400ms的启动时间。

参考

感谢抖音团队和Facebook团队提供优化新思路

抖音研发实践:基于二进制文件重排的解决方案 APP启动速度提升超15%https://mp.weixin.qq.com/s/Drmmx5JtjG3UtTFksL6Q8Q
Improving iOS Startup Performance with Binary Layout Optimizations
https://atscaleconference.com/videos/performance-scale-improving-ios-startup-performance-with-binary-
layout-optimizations/
Linux下Page Fault的处理流程 https://cloud.tencent.com/developer/article/1459526

We are hiring

淘宝基础平台团队正在进行社招招聘,岗位有iOS Android客户端开发工程师、Java研发工程师、C/C++研发工程师、前端开发工程师、算法工程师,欢迎投递简历至📮:junzhan.yzw@taobao.com
如果你想更详细了解淘宝基础平台团队,点击下方“阅读原文”观看团队介绍视频
更多淘宝基础平台团队的技术分享,可关注淘系技术微信公众号AlibabaMTT

目录
相关文章
|
4月前
|
数据采集 监控 API
移动端性能监控探索:iOS RUM SDK 技术架构与实践
阿里云 RUM SDK 作为一款性能体验监控采集工具,可以作为辅助 App 运维的强有力助手,提升您的问题排查效率。
323 47
|
安全 Android开发 iOS开发
深入探索Android与iOS的差异:从系统架构到用户体验
在当今的智能手机市场中,Android和iOS无疑是最受欢迎的两大操作系统。本文旨在探讨这两个平台之间的主要差异,包括它们的系统架构、开发环境、安全性、以及用户体验等方面。通过对比分析,我们可以更好地理解为何不同的用户群体可能会偏好其中一个平台,以及这些偏好背后的技术原因。
|
Android开发 Swift iOS开发
深入探索iOS与Android操作系统的架构差异及其对应用开发的影响
在当今数字化时代,移动设备已经成为我们日常生活和工作不可或缺的一部分。其中,iOS和Android作为全球最流行的两大移动操作系统,各自拥有独特的系统架构和设计理念。本文将深入探讨iOS与Android的系统架构差异,并分析这些差异如何影响应用开发者的开发策略和用户体验设计。通过对两者的比较,我们可以更好地理解它们各自的优势和局限性,从而为开发者提供有价值的见解,帮助他们在这两个平台上开发出更高效、更符合用户需求的应用。
|
IDE Android开发 iOS开发
深入解析Android与iOS的系统架构及开发环境差异
本文旨在探讨Android和iOS两大主流移动操作系统在系统架构、开发环境和用户体验方面的显著差异。通过对比分析,我们将揭示这两种系统在设计理念、技术实现以及市场策略上的不同路径,帮助开发者更好地理解其特点,从而做出更合适的开发决策。
1808 2
|
12月前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
539 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
开发工具 Android开发 iOS开发
Android与iOS生态差异深度剖析:技术架构、开发体验与市场影响####
本文旨在深入探讨Android与iOS两大移动操作系统在技术架构、开发环境及市场表现上的核心差异,为开发者和技术爱好者提供全面的视角。通过对比分析,揭示两者如何塑造了当今多样化的移动应用生态,并对未来发展趋势进行了展望。 ####
|
安全 Android开发 iOS开发
深入探索iOS与Android系统架构差异及其对开发者的影响
本文旨在通过对比分析iOS和Android两大移动操作系统的系统架构,探讨它们在设计理念、技术实现及开发者生态方面的差异。不同于常规摘要仅概述内容要点,本摘要将简要触及核心议题,为读者提供对两大平台架构特点的宏观理解,铺垫
|
传感器 iOS开发 UED
探索iOS生态系统:从App Store优化到用户体验提升
本文旨在深入探讨iOS生态系统的多个方面,特别是如何通过App Store优化(ASO)和改进用户体验来提升应用的市场表现。不同于常规摘要仅概述文章内容的方式,我们将直接进入主题,首先介绍ASO的重要性及其对开发者的意义;接着分析当前iOS平台上用户行为的变化趋势以及这些变化如何影响应用程序的设计思路;最后提出几点实用建议帮助开发者更好地适应市场环境,增强自身竞争力。
|
IDE 安全 Android开发
深入探索Android与iOS操作系统的架构差异
本文旨在对比分析Android和iOS两大主流移动操作系统在架构设计上的根本差异。通过详细解读两者的系统架构、开发环境、以及安全性等方面,揭示它们各自的特点及优势,为开发者选择合适的平台提供参考。
|
安全 Swift iOS开发
Swift 与 UIKit 在 iOS 应用界面开发中的关键技术和实践方法
本文深入探讨了 Swift 与 UIKit 在 iOS 应用界面开发中的关键技术和实践方法。Swift 以其简洁、高效和类型安全的特点,结合 UIKit 丰富的组件和功能,为开发者提供了强大的工具。文章从 Swift 的语法优势、类型安全、编程模型以及与 UIKit 的集成,到 UIKit 的主要组件和功能,再到构建界面的实践技巧和实际案例分析,全面介绍了如何利用这些技术创建高质量的用户界面。
381 2

热门文章

最新文章