开发者社区> 个推> 正文

Android 贝塞尔曲线实战之网易云音乐鲸云特效

简介: 作者:哈哈将 -个推 Android 高级开发工程师 前言 APP开发市场已经告别“野蛮生长”时代,人们不再满足于APP外形创新,而将目光转向全方面的用户体验上。在这过程中,动效化作为移动互联网产品的新趋势,如何实现酷炫丝滑的动画效果已然成为开发者们的新课题。
+关注继续查看

作者:哈哈将 -个推 Android 高级开发工程师

前言

APP开发市场已经告别“野蛮生长”时代,人们不再满足于APP外形创新,而将目光转向全方面的用户体验上。在这过程中,动效化作为移动互联网产品的新趋势,如何实现酷炫丝滑的动画效果已然成为开发者们的新课题。实现方式其实很简单。本文将为你剖析理论基础以及具体应用。咱们日常使用的 APP 的时候,出现的很多酷炫动画k可能都是有着贝塞尔曲线的身影。看完这篇文章,你的App也可以达到酷炫吊炸天的动画效果。

先看两个例子:

  1. 手机 QQ 未读消息红点拖拽效果。

  1. 小说阅读 APP 的翻页效果。

简介

在开始实战之前,我们还是先了解下理论基础。动画的终极武器就是贝塞尔曲线了。它是一条光滑的曲线,依据四个位置任意的点坐标绘制而成。1962年,法国工程师皮埃尔·贝塞尔(Pierre Bézier)率先研究出这种矢量绘制曲线的方法并给出了详细的计算公式,应用于汽车的主体设计。因此,人们将按照此种公式绘制的曲线命名为贝塞尔曲线。

核心思想

贝塞尔曲线是计算机图形学中运用得最多的参数曲线之一。它通过控制曲线上的四个点(起始点、终止点以及两个相互分离的中间点)来创造、编辑图形。其中起重要作用的是位于曲线中央的控制线。这条线是虚拟的,中间与贝塞尔曲线交叉,两端是控制端点。移动两端的端点时贝塞尔曲线可以改变曲线的曲率(弯曲的程度);移动中间点(也就是移动虚拟的控制线)时,贝塞尔曲线在起始点和终止点锁定的情况下做均匀移动。注意:贝塞尔曲线上的所有控制点、节点均可编辑。

原理

这里面有个通用公式,这个公式已经有前辈帮我们总结好了。

其中 P0 为起点,Pn 为中点,Pi 为控制点。

一阶贝塞尔曲线

一阶这个比较简单,因为没有在网上找到可以直接输入数学公式的工具,就手工推导了下。

最后的公式为 B(t)=(1-t)Po+tP1,t->[0,1]

二阶贝塞尔曲线

先看动画效果。

关注红线部分,这条线就是我们单位时间内运行的贝塞尔曲线效果图。这条红线实际上是由无数个点组成,随着 t 的不断变化,红线的转换过程非常的顺滑。


最后得到的公式如下:

贝塞尔曲线的绘制,无论多少阶(一阶除外),均需要逐级降阶,最终降至一阶。在 “二阶贝塞尔曲线解析” 这段文字中,从 第一步 到 第二步 的过程就是在降阶。贝塞尔曲线最终的路径是由 一阶基线 上游走的红色小点形成的。

三阶贝塞尔曲线

有了二阶的推导过程,三阶的推导就容易多啦。由于篇幅限制,推导过程这里不再展开,大家有兴趣的话可以自行推导下。


最后的红色曲线是由蓝色一阶曲线获得的,而蓝色一阶曲线又是由绿色一阶曲线获得,最后的绿色一阶曲线则是最外的 P0,P1,P2,P3构成的。动画效果为:

四阶贝塞尔曲线

五阶贝塞尔曲线

结论 我们发现原来贝塞尔曲线上的点与高数中二项式展开一样,对于每个线段上的点经过控制点进行切面操作,而连续的两点之间是无限接近的,所以在绘制的过程中会出现非常丝滑地过度。

贝塞尔曲线在 Android 上的使用

在Android 中使用贝塞尔曲线比较简单,Android 已经内置了贝塞尔曲线的 API,开发者可以直接予以调用。主要有两个 API 。

quadTo

Path path = new Path(); path.moveTo(startX, startY);
path.quadTo(eventX, eventY, endX, endY);
canvas.drawPath(path, paint);

其中 (startX,startY) 为起点,(endX,endY)为终点,而 (eventX,eventY)即为控制点了。

cubicTo

Path path = new Path();
path.moveTo(startX, startY);
path.cubicTo(leftX, leftY, rightX, rightY, endX, endY);
canvas.drawPath(path, paint);

调用此方法即可画出一条三阶贝塞尔曲线。(startX,startY)为起点,(endX,endY)为终点,而(leftX,leftY)与(rightX,rightY) 为两个控制点了。

多阶贝塞尔曲线: Android 系统最高只能画出三阶的贝塞尔曲线,那么想画出更高阶的怎么办呢?其实也很简单。如果真的需要使用高阶的曲线,可以进行人工降阶,降阶到 3 级即可。

实战

终于到实战环节了,该环节共有两个demo。一个是贝塞尔曲线拟圆效果,另一个是仿网易云音乐里面的鲸云效果。

效果实现1:以贝塞尔曲线画圆为例

前文总结了贝塞尔曲线的通用公式。在网上浏览资料的过程中我们发现有这么一个公式:(4/3)tan(π/(2n)),其意义是由n段三阶贝塞尔曲线拟合圆形时,曲线端点到该端点最近的控制点的最佳距离是(4/3)tan(π/(2n))。大家感兴趣的话可以自行推导。推导过程并不复杂,因为贝塞尔曲线有个重要的性质,即曲线方程中t=0.5时的点一定落在圆弧上。只需要把坐标系带入到三阶方程式即可。


最后得知当 t=0.5,根据圆形方程式 X^2+Y^2=R^2 ,得到h=(4/3)(sqrt(2)-1) ≈ 0.552284749831 。有了上述的理论基础,再去画圆就非常的轻松,我们先在草稿纸中得到这么一个模型。

根据上图,这个圆是由 4 段三阶贝塞尔曲线构成的,分别是 P0->P3,P3->P6,P6->P9,P9->P11。三阶贝塞尔曲线的构图是 Android 内置的,我们直接调用API 即可,核心代码如下:

public HeartView(Context context, @Nullable AttributeSet attrs, int defStyleAttr) {

    super(context, attrs, defStyleAttr);
    init(context)
}

@Override
protected void init(Context context) {
    mPaint = new Paint();
    mPaint.setAntiAlias(true);
    mPaint.setColor(Color.RED);
    mPaint.setStyle(Paint.Style.FILL);

    mPath = new Path();
  //绘制 12 个点。
    mCurPointList = new ArrayList<>();
    mCurPointList.add(new PointF(0, dpToPx(-89)));
    mCurPointList.add(new PointF(dpToPx(50), dpToPx(-89)));
    mCurPointList.add(new PointF(dpToPx(90), dpToPx(-49)));
    mCurPointList.add(new PointF(dpToPx(90), 0));
    mCurPointList.add(new PointF(dpToPx(90), dpToPx(50)));
    mCurPointList.add(new PointF(dpToPx(50), dpToPx(90)));
    mCurPointList.add(new PointF(0, dpToPx(90)));
    mCurPointList.add(new PointF(dpToPx(-49), dpToPx(90)));
    mCurPointList.add(new PointF(dpToPx(-89), dpToPx(50)));
    mCurPointList.add(new PointF(dpToPx(-89), 0));
    mCurPointList.add(new PointF(dpToPx(-89), dpToPx(-49)));
    mCurPointList.add(new PointF(dpToPx(-49), dpToPx(-89)));
}

@Override
protected void onDraw(Canvas canvas) {
    drawCoordinate(canvas);

    canvas.translate(mWidth / 2, mHeight / 2);

    mPath.reset();
    for (int i = 0; i < 4; i++) {
        if (i == 0) {
            mPath.moveTo(mCurPointList.get(i * 3).x, mCurPointList.get(i * 3).y);
        } else {
            mPath.lineTo(mCurPointList.get(i * 3).x, mCurPointList.get(i * 3).y);
        }

        int endPointIndex;
        if (i == 3) {
            endPointIndex = 0;
        } else {
            endPointIndex = i * 3 + 3;
        }

        mPath.cubicTo(mCurPointList.get(i * 3 + 1).x, mCurPointList.get(i * 3 + 1).y,
                mCurPointList.get(i * 3 + 2).x, mCurPointList.get(i * 3 + 2).y,
                mCurPointList.get(endPointIndex).x, mCurPointList.get(endPointIndex).y);
    }

    canvas.drawPath(mPath, mPaint);

}

}

成果展示

效果实现2:以网易云音乐鲸云效果为例

转换成 GIF,图片可能会有点失真,但并不妨碍具体实现思路。根据这个 GIF,我们发现有三点功能需要去完成:

1.背景色与歌曲图片相搭配,随图片的变化而变化;

2.歌曲中间图片是一张圆形图片并且可以自动旋转;

3.图形外圈有动感 3D环绕效果。

第一点实现比较简单。

第二点也不难。我们可以把一张图片裁剪成圆形,也可以使用 GitHub 上现有的开源库,再加上一个属性动画代码。

public void handleRotate(){
    ObjectAnimator objectAnimator = ObjectAnimator.ofFloat(ivShowPic, "rotation", 0f, 360f);
    objectAnimator.setDuration(20 * 1000);        
    objectAnimator.setRepeatMode(ValueAnimator.RESTART);        
    objectAnimator.setInterpolator(new LinearInterpolator());        
    objectAnimator.setRepeatCount(-1);        
    objectAnimator.start();
}

看下动感3D环绕效果即转圈圈。

第三点 如何做跳动旋律特效?!!先不考虑前面两点需求,我们逐步分析下跳动旋律特效。动态图在文章开始部分已经看到了,我们建议先从静态图着手。

我们猜测可能的实现思路(不代表官方实现思路):该动效外层一圈有 4 条线段在不规则地跳动,每条线的背后是一个圆,每个圆由 4 条贝塞尔曲线组成。

第一步 先画个圆。我们只需要把画笔的属性设置成如下属性,即可画出一个空心圆。

mPaint.setStyle(Paint.Style.STROKE);

为达到更顺滑的环绕效果,我们需要不断调试各条贝塞尔曲线的对应的两个控制点。具体参数可根据业务场景来定。文中demo仅作参考。

第二步 上文我们分析过这个圆其实是由贝塞尔曲线组成的拟圆。在Android系统中是以每秒60帧为满帧的,那么只要将1秒÷60帧,就能得出16毫秒(ms)/帧是满帧的界限,即每帧快于16ms则为流畅。所以我们这边的刷新频率设定为每 80 毫秒刷新一次:

public void onPlay(View view){

    scheduledExecutorService = Executors.newScheduledThreadPool(1);
    scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
        @Override
        public void run() {
            diyBezierView.post(new Runnable() {
                @Override
                public void run() {
                    diyBezierView.play();
                }
            });
        }
    },0,80, TimeUnit.MILLISECONDS);

得到的效果如下:


第三步 雏形已经完成,后续我们的做法是再往上添加 2 个圆,看下 3 个圆是怎么样的效果。


第四步 最后一步当然是把前面两点合在一起啦,合一起后就可以看下最终效果了:

实际效果与预期效果会存在一定的差异,主要原因在于函数坐标以及画笔的一些属性问题。以上就是具体的实现思路,供大家参考。

总结

酷炫动画的实现过程并没有我们想象的那么复杂。其实,很多复杂特效都是由不同的动画组合而成的,而丝滑般的动态效果则离不开贝塞尔曲线的应用。希望这篇文章可以帮助到想要做出酷炫丝滑的动态效果的你。

如何获取实战 Demo

https://github.com/LiuLei0571/jingyun_breizer
或者也可以关注【个推技术学院】微信公众号

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
阿里云RPA为财险企业提效900%
财险企业不免存在大量信息录入,保单打印等工作,因此不少企业陷于客户信息确认并录入、车辆信息录入以及险种信息录入和保单打印等繁杂单一的低附加值日常事务性工作中无法抽身,进而无法开展新的工作。
370 0
阿里云ECS云服务器初始化设置教程方法
阿里云ECS云服务器初始化是指将云服务器系统恢复到最初状态的过程,阿里云的服务器初始化是通过更换系统盘来实现的,是免费的,阿里云百科网分享服务器初始化教程: 服务器初始化教程方法 本文的服务器初始化是指将ECS云服务器系统恢复到最初状态,服务器中的数据也会被清空,所以初始化之前一定要先备份好。
14318 0
企业级一站式DevOps平台——阿里云云效初体验
现在云效平台正在公测阶段,大家一定非常关心,那就跟着加菲猫一起来体验一下吧。
655 0
Android 贝塞尔曲线实战之网易云音乐鲸云特效
作者:哈哈将 -个推 Android 高级开发工程师 前言 APP开发市场已经告别“野蛮生长”时代,人们不再满足于APP外形创新,而将目光转向全方面的用户体验上。在这过程中,动效化作为移动互联网产品的新趋势,如何实现酷炫丝滑的动画效果已然成为开发者们的新课题。
1231 0
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,阿里云优惠总结大概有三种登录方式: 登录到ECS云服务器控制台 在ECS云服务器控制台用户可以更改密码、更换系.
30126 0
阿里云云效发布云原生应用交付平台,加速企业云原生DevOps规模化落地
编者按:阿里云云效发布云原生应用交付平台,加速企业云原生DevOps规模化落地10月21日,2021云栖大会云效BizDevOps分论坛上,阿里云云效技术负责人陈鑫正式发布云效云原生应用交付平台AppStack,旨在进一步加速企业云原生DevOps规模化落地。 为什么企业需要云原生应用交付平台?云效云原生应用交付平台有何特色?本文将为你详细道来。
265 0
代码安全无忧—云效Codeup代码加密技术发展之路
从代码服务及代码安全角度出发,看看云效代码加密技术如何解决这一问题
1078 0
横跨2017-2018,云效Work Like Alibaba系列直播第五期盛大开启
横跨2017-2018年直播,晚上20:00在云栖社区直播间和阿里巴巴技术专家一起,探讨像阿里巴巴一样高效跨企业项目协作,像阿里巴巴一样保障软件研发质量。
1791 0
阿里云服务器端口号设置
阿里云服务器初级使用者可能面临的问题之一. 使用tomcat或者其他服务器软件设置端口号后,比如 一些不是默认的, mysql的 3306, mssql的1433,有时候打不开网页, 原因是没有在ecs安全组去设置这个端口号. 解决: 点击ecs下网络和安全下的安全组 在弹出的安全组中,如果没有就新建安全组,然后点击配置规则 最后如上图点击添加...或快速创建.   have fun!  将编程看作是一门艺术,而不单单是个技术。
21210 0
+关注
40
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
JS零基础入门教程(上册)
立即下载
性能优化方法论
立即下载
手把手学习日志服务SLS,云启实验室实战指南
立即下载