1工业企业大数据平台构建的一些思路和方法

简介: 大数据平台统一管理、集中存储大数据资源,满足高并发,海量数据对高性能计算能力和大容量存储能力的需求,提供数据采集,数据计算,数据存储,数据分析,数据可视化等大量开放能力,确保各系统之间数据的互联互通和共享,为数据的全链条透明化、运营决策的高度智能化提供依据,尽早建立大数据平台具有重要意义。
+关注继续查看

数据平台的概述
大数据平台统一管理、集中存储大数据资源,满足高并发,海量数据对高性能计算能力和大容量存储能力的需求,提供数据采集,数据计算,数据存储,数据分析,数据可视化等大量开放能力,确保各系统之间数据的互联互通和共享,为数据的全链条透明化、运营决策的高度智能化提供依据,尽早建立大数据平台具有重要意义。

构建大数据平台的必要性

大数据平台承载所有数据的管理,为上层应用提供数据支撑。传统的开发模式中,各个应用开发独立进行,各自沉淀自己的数据。各个应
用的数据缺乏整合,形成数据孤岛,后续无法沉淀数据资产。同时,因为没有一个统一的大数据平台,各个应用都会有自己的数据存储和计算体系,存在大量的重复建设。
以数据中台为核心的上层智能应用的开发,离不开大数据平台的支持。大数据平台提供统一的数据数据存储,计算能力。上层应用不需要再重复开发,只需要使用数据中台提供的能力。同时,多个上层应用的数据也集中沉淀到一起,形成有效的数据资产。

大数据平台建设

一般来说大数据主要具有以下特征

  • 数据海量性
  • 数据稀疏性
  • 数据复杂性
  • 数据丰富性

大数据平台架构一般包含以下组件

  • 数据采集
  • 数据存储
  • 数据计算
  • 数据管理
  • 数据服务

大数据集成子系统

大数据平台需要提供数据采集能力,完成从传统数据库到大数据平台的数据采集,包含批量采集和基于流处理的实时采集,平台提供如下能力:

  • 批量数据采集:大数据平台支持数据批量采集,对于大量、实时性要求不高的数据适宜采用定时执行批量采集。
  • 实时数据采集:对于实时性要求较高的数据,支持实时数据采集的方式,保障平台数据及时性。
  • 互联网数据采集:互联网的数据采集方式主要以页面文本或文档形式的数据为主,为了兼容不同类型的互联网输入方式,一般先将数据进行流式数据清洗后,再送到搜索引擎或者其他数据库中。

大数据开发子系统

大数据平台需要提供对海量数据汇总后的多种数据并行处理,包括离线的批处理、SQL 处理、以及近实时的内存处理等,大数据平台提供如下数据开发功能,帮助实现数据治理,数据聚合和数据转换,平台提供如下能力:

  • 数据查询:数据开发支持各种常用数据库的SQL语句,例如Oracle、MySql、SQLite、PostgreSQL、Hive等等。
  • 数据开发编辑器:数据开发编辑器支持常见语言及脚本编辑模式,可以结合实际情况,自由选择开发形式,轻松实现数据治理任务开发的模块化、组件化。
  • 数据处理工作流配置:在数据开发编辑器中,写好数据处理的任务后,可以将这些任务添加到数据处理工作流中,让这些处理任务按顺序逐个执行,实现数据处理工作流程的自动化。如下图所示,拖动任务类型图标至工作流中即可,所有任务将按照箭头顺序从上到下执行。
  • 数据工作流定时执行设置:新增定时任务,选择需要定时执行的工作流,配置工作流运行周期、时区和运行时间区间,即可实现数据处理任务的自动定时执行。
相关实践学习
简单用户画像分析
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
数据可视化 大数据 数据挖掘
文献丨多组学大数据构建小麦穗发育转录调控网络,TRN+GWAS挖掘关键转录调控(三)
文献丨多组学大数据构建小麦穗发育转录调控网络,TRN+GWAS挖掘关键转录调控(三)
|
1月前
|
网络协议 大数据 数据挖掘
文献丨多组学大数据构建小麦穗发育转录调控网络,TRN+GWAS挖掘关键转录调控(二)
文献丨多组学大数据构建小麦穗发育转录调控网络,TRN+GWAS挖掘关键转录调控(二)
|
1月前
|
大数据 数据挖掘 Go
文献丨多组学大数据构建小麦穗发育转录调控网络,TRN+GWAS挖掘关键转录调控(一)
文献丨多组学大数据构建小麦穗发育转录调控网络,TRN+GWAS挖掘关键转录调控
|
2月前
|
移动开发 运维 监控
低代码开发云平台源码,支持多种企业应用场景,快速构建CRM、ERP、OA、BI、IoT、大数据应用程序
基于 moleculer 微服务架构开发,提供微服务的应用开发、配置管理、服务注册与发现、服务认证与授权、服务网关、服务监控、统一日志分析等,提供微服务应用的开发、部署、监控、运维等应用生命周期管理。
低代码开发云平台源码,支持多种企业应用场景,快速构建CRM、ERP、OA、BI、IoT、大数据应用程序
|
2月前
|
存储 人工智能 NoSQL
MongoDB推出五项MongoDB Atlas新功能,帮助企业使用单一开发者数据平台构建新应用程序类别
Beamable、Pureinsights、Anywhere Real Estate及Hootsuite等客户和合作伙伴,正使用MongoDB Atlas新功能构建下一代应用程序
MongoDB推出五项MongoDB Atlas新功能,帮助企业使用单一开发者数据平台构建新应用程序类别
|
3月前
|
存储 机器学习/深度学习 搜索推荐
构建智能电商推荐系统:大数据实战中的Kudu、Flink和Mahout应用【上进小菜猪大数据】
构建智能电商推荐系统:大数据实战中的Kudu、Flink和Mahout应用【上进小菜猪大数据】
118 0
|
7月前
|
分布式计算 MaxCompute
《基于阿里云MaxCompute构建企业云数据仓库CDW的最佳实践建议》电子版地址
基于阿里云MaxCompute构建企业云数据仓库CDW的最佳实践建议
203 0
《基于阿里云MaxCompute构建企业云数据仓库CDW的最佳实践建议》电子版地址
|
8月前
|
分布式计算 MaxCompute
《图书行业基于MaxCompute构建数据中台的最佳实践》电子版地址
图书行业基于MaxCompute构建数据中台的最佳实践
101 0
《图书行业基于MaxCompute构建数据中台的最佳实践》电子版地址
|
9月前
|
分布式计算 MaxCompute
《基于阿里云MaxCompute 构建企业云数据仓库CDW的最佳实践建议》电子版地址
基于阿里云MaxCompute 构建企业云数据仓库CDW的最佳实践建议
166 0
《基于阿里云MaxCompute 构建企业云数据仓库CDW的最佳实践建议》电子版地址
|
9月前
|
SQL 存储 分布式计算
助力工业物联网,工业大数据项目介绍及环境构建【一】
第一产业:植业、林业、畜牧业、水产养殖业等直接以自然物为生产对象的产业;第二产业:工业、建筑业;第三产业:交通运输业、通讯产业、商业、餐饮业、金融业、教育产业
202 0
助力工业物联网,工业大数据项目介绍及环境构建【一】
推荐文章
更多