1工业企业大数据平台构建的一些思路和方法

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据平台统一管理、集中存储大数据资源,满足高并发,海量数据对高性能计算能力和大容量存储能力的需求,提供数据采集,数据计算,数据存储,数据分析,数据可视化等大量开放能力,确保各系统之间数据的互联互通和共享,为数据的全链条透明化、运营决策的高度智能化提供依据,尽早建立大数据平台具有重要意义。

数据平台的概述
大数据平台统一管理、集中存储大数据资源,满足高并发,海量数据对高性能计算能力和大容量存储能力的需求,提供数据采集,数据计算,数据存储,数据分析,数据可视化等大量开放能力,确保各系统之间数据的互联互通和共享,为数据的全链条透明化、运营决策的高度智能化提供依据,尽早建立大数据平台具有重要意义。

构建大数据平台的必要性

大数据平台承载所有数据的管理,为上层应用提供数据支撑。传统的开发模式中,各个应用开发独立进行,各自沉淀自己的数据。各个应
用的数据缺乏整合,形成数据孤岛,后续无法沉淀数据资产。同时,因为没有一个统一的大数据平台,各个应用都会有自己的数据存储和计算体系,存在大量的重复建设。
以数据中台为核心的上层智能应用的开发,离不开大数据平台的支持。大数据平台提供统一的数据数据存储,计算能力。上层应用不需要再重复开发,只需要使用数据中台提供的能力。同时,多个上层应用的数据也集中沉淀到一起,形成有效的数据资产。

大数据平台建设

一般来说大数据主要具有以下特征

  • 数据海量性
  • 数据稀疏性
  • 数据复杂性
  • 数据丰富性

大数据平台架构一般包含以下组件

  • 数据采集
  • 数据存储
  • 数据计算
  • 数据管理
  • 数据服务

大数据集成子系统

大数据平台需要提供数据采集能力,完成从传统数据库到大数据平台的数据采集,包含批量采集和基于流处理的实时采集,平台提供如下能力:

  • 批量数据采集:大数据平台支持数据批量采集,对于大量、实时性要求不高的数据适宜采用定时执行批量采集。
  • 实时数据采集:对于实时性要求较高的数据,支持实时数据采集的方式,保障平台数据及时性。
  • 互联网数据采集:互联网的数据采集方式主要以页面文本或文档形式的数据为主,为了兼容不同类型的互联网输入方式,一般先将数据进行流式数据清洗后,再送到搜索引擎或者其他数据库中。

大数据开发子系统

大数据平台需要提供对海量数据汇总后的多种数据并行处理,包括离线的批处理、SQL 处理、以及近实时的内存处理等,大数据平台提供如下数据开发功能,帮助实现数据治理,数据聚合和数据转换,平台提供如下能力:

  • 数据查询:数据开发支持各种常用数据库的SQL语句,例如Oracle、MySql、SQLite、PostgreSQL、Hive等等。
  • 数据开发编辑器:数据开发编辑器支持常见语言及脚本编辑模式,可以结合实际情况,自由选择开发形式,轻松实现数据治理任务开发的模块化、组件化。
  • 数据处理工作流配置:在数据开发编辑器中,写好数据处理的任务后,可以将这些任务添加到数据处理工作流中,让这些处理任务按顺序逐个执行,实现数据处理工作流程的自动化。如下图所示,拖动任务类型图标至工作流中即可,所有任务将按照箭头顺序从上到下执行。
  • 数据工作流定时执行设置:新增定时任务,选择需要定时执行的工作流,配置工作流运行周期、时区和运行时间区间,即可实现数据处理任务的自动定时执行。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
150 1
|
2月前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
74 5
|
2月前
|
存储 SQL 分布式计算
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
65 3
|
1月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
161 3
【赵渝强老师】基于大数据组件的平台架构
|
29天前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
量子计算作为革命性的计算范式,凭借量子比特和量子门的独特优势,展现出在大数据处理中的巨大潜力。本文探讨了量子计算的基本原理、在大数据处理中的应用及面临的挑战与前景,展望了其在金融、医疗和物流等领域的广泛应用。
|
2月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
33 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
2月前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
【10月更文挑战第31天】量子计算凭借其独特的量子比特和量子门技术,为大数据处理带来了革命性的变革。相比传统计算机,量子计算在计算效率、存储容量及并行处理能力上具有显著优势,能有效应对信息爆炸带来的挑战。本文探讨了量子计算如何通过量子叠加和纠缠等原理,加速数据处理过程,提升计算效率,特别是在金融、医疗和物流等领域中的具体应用案例,同时也指出了量子计算目前面临的挑战及其未来的发展方向。
|
2月前
|
机器学习/深度学习 监控 搜索推荐
电商平台如何精准抓住你的心?揭秘大数据背后的神秘推荐系统!
【10月更文挑战第12天】在信息爆炸时代,数据驱动决策成为企业优化决策的关键方法。本文以某大型电商平台的商品推荐系统为例,介绍其通过收集用户行为数据,经过预处理、特征工程、模型选择与训练、评估优化及部署监控等步骤,实现个性化商品推荐,提升用户体验和销售额的过程。
93 1
|
2月前
|
SQL 分布式计算 大数据
大数据-160 Apache Kylin 构建Cube 按照日期构建Cube 详细记录
大数据-160 Apache Kylin 构建Cube 按照日期构建Cube 详细记录
48 2
|
2月前
|
SQL 消息中间件 大数据
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
72 1
下一篇
DataWorks