工作流在Kubernetes集群中的实践

简介: 本文主要介绍如何在ACK上基于工作流引擎进行大规模基因测序工作。阿里云工作流引擎基于开源项目Argo实现,支持并发、循环、重试等多种执行策略。

实验步骤:

依赖配置:
  1. 创建集群
  2. 安装AGS插件;
  3. 配置argo-ui;
  4. 创建NAS共享存储卷

实验:
  任务解析;
  试验一:单任务执行;
  试验二:多任务执行;

1. 创建集群:

拿到集群测试域名;c84e9207b8f6b49968cb5570aff4e6581.cn-beijing.alicontainer.com

1-1.png

2. 安装AGS插件;

1-2.png

3. 配置argo-ui:

1-3.png

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: workflow-ingress
  namespace: argo
spec:
  rules:
  - host: workflow.c84e9207b8f6b49968cb5570aff4e6581.cn-beijing.alicontainer.com
    http:
      paths:
      - path: /
        backend:
          serviceName: argo-ui
          servicePort: 80

通过界面登陆argo-ui: workflow.c84e9207b8f6b49968cb5570aff4e6581.cn-beijing.alicontainer.com

4. 创建NAS卷

登陆NAS控制台:
1-4.png
创建NAS盘后,添加挂载点:
1-5.png
获取挂载点地址:
1-6.png

Mapping步骤介绍:

1-7.png

数据准备:

wget reference;
        wget fastq1;
        wget fastq2;
        gzip -d subset_assembly.fa.gz;
        gunzip -c SRR1976948_1.fastq.gz | head -800000 > SRR1976948.1;
        gunzip -c SRR1976948_2.fastq.gz | head -800000 > SRR1976948.2;
        bwa index subset_assembly.fa;

比对到参考序列sai:

bwa aln subset_assembly.fa SRR1976948.1 > SRR1976948_1.untrimmed.sai;
        bwa aln subset_assembly.fa SRR1976948.2 > SRR1976948_2.untrimmed.sai;

生成sam、bam文件:

bwa sampe subset_assembly.fa SRR1976948_1.untrimmed.sai SRR1976948_2.untrimmed.sai SRR1976948.1 SRR1976948.2 > SRR1976948.untrimmed.sam;
        samtools import subset_assembly.fa SRR1976948.untrimmed.sam SRR1976948.untrimmed.sam.bam;
        samtools sort SRR1976948.untrimmed.sam.bam -o SRR1976948.untrimmed.sam.bam.sorted.bam;
        samtools index SRR1976948.untrimmed.sam.bam.sorted.bam;

5. 试验一:

不使用共享存储,通过单一pod实现,挂载主机目录,运行完成可以从日志查看结果;
1-8.png
到Argo-UI上看运行拓扑图:
1-9.png

5. 试验二:

使用多个任务完成,并使用共享nas存储,运行完成可以从日志查看结果;
1-10.png
到Argo-UI界面查看:
1-11.png

本文作者:阚俊宝

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
4月前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
403 1
|
4月前
|
弹性计算 监控 调度
ACK One 注册集群云端节点池升级:IDC 集群一键接入云端 GPU 算力,接入效率提升 80%
ACK One注册集群节点池实现“一键接入”,免去手动编写脚本与GPU驱动安装,支持自动扩缩容与多场景调度,大幅提升K8s集群管理效率。
290 89
|
9月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
ACK One 的多集群应用分发,可以最小成本地结合您已有的单集群 CD 系统,无需对原先应用资源 YAML 进行修改,即可快速构建成多集群的 CD 系统,并同时获得强大的多集群资源调度和分发的能力。
409 9
|
9月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
本文介绍如何利用阿里云的分布式云容器平台ACK One的多集群应用分发功能,结合云效CD能力,快速将单集群CD系统升级为多集群CD系统。通过增加分发策略(PropagationPolicy)和差异化策略(OverridePolicy),并修改单集群kubeconfig为舰队kubeconfig,可实现无损改造。该方案具备多地域多集群智能资源调度、重调度及故障迁移等能力,帮助用户提升业务效率与可靠性。
|
11月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
995 33
|
10月前
|
存储 负载均衡 测试技术
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
11月前
|
Kubernetes 开发者 Docker
集群部署:使用Rancher部署Kubernetes集群。
以上就是使用 Rancher 部署 Kubernetes 集群的流程。使用 Rancher 和 Kubernetes,开发者可以受益于灵活性和可扩展性,允许他们在多种环境中运行多种应用,同时利用自动化工具使工作负载更加高效。
625 19
|
11月前
|
人工智能 分布式计算 调度
打破资源边界、告别资源浪费:ACK One 多集群Spark和AI作业调度
ACK One多集群Spark作业调度,可以帮助您在不影响集群中正在运行的在线业务的前提下,打破资源边界,根据各集群实际剩余资源来进行调度,最大化您多集群中闲置资源的利用率。
|
11月前
|
存储 人工智能 Kubernetes
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
11月前
|
存储 人工智能 物联网
ACK Gateway with AI Extension:大模型推理的模型灰度实践
本文介绍了如何使用 ACK Gateway with AI Extension 组件在云原生环境中实现大语言模型(LLM)推理服务的灰度发布和流量分发。该组件专为 LLM 推理场景设计,支持四层/七层流量路由,并提供基于模型服务器负载感知的智能负载均衡能力。通过自定义资源(CRD),如 InferencePool 和 InferenceModel,可以灵活配置推理服务的流量策略,包括模型灰度发布和流量镜像。

推荐镜像

更多