使用spark-redis组件访问云数据库Redis

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本文演示了在Spark Shell中通过spark-redis组件读写Redis数据的场景。所有场景在阿里云E-MapReduce集群内完成,Redis使用阿里云数据库Redis

本文演示了在Spark Shell中通过spark-redis组件读写Redis数据的场景。所有场景在阿里云E-MapReduce集群内完成,Redis使用阿里云数据库Redis。

创建服务

我们以EMR-3.21.0版本和Redis 4.0为例。EMR集群安装的Spark版本是2.4.3,我们需要使用对应的Spark-Redis 2.4版本,该组件可以支持Redis 2.9.0以上版本。

EMR和Redis需要在同一个VPC网络中创建,同时,在云数据库Redis实例启动之后,需要在“白名单设置”中添加EMR集群IP地址(参考Redis快速入门文档)。

启动Spark Shell

接下去,我们登录EMR Master节点启动Spark Shell。如果Master节点可以连接外网,可以使用package方式加载spark-redis相关jar包:

spark-shell --packages com.redislabs:spark-redis:2.4.0 \
 --conf spark.redis.host=hostname \
 --conf spark.redis.port=6379 \
 --conf spark.redis.auth=password

spark.redis.host等参数可以在命令行指定,也可以配置在 spark-defaults.conf 中,也可以在代码中指定。其中:

  1. spark.redis.host:Redis内网连接地址
  2. spark.redis.port:Redis服务端口号
  3. spark.redis.auth:创建Redis实例时指定的密码

也可以通过--jars的方式指定依赖的jar包:

spark-shell --jars spark-redis-2.4.0.jar,jedis-3.1.0-m1.jar,commons-pool2-2.0.jar \
 --conf spark.redis.host=hostname \
 --conf spark.redis.port=6379 \
 --conf spark.redis.auth=password

通过Spark写入数据到Redis(RDD)

scala> import com.redislabs.provider.redis._    
import com.redislabs.provider.redis._

scala> val data = Array(("key1", "v1"), ("key2", "world"), ("key3", "hello"), ("key4", "Hong"), ("key5", "Kong"))    
data: Array[(String, String)] = Array((key1,v1), (key2,world), (key3,hello), (key4,Hong), (key5,Kong))

scala> val distData = sc.parallelize(data)    
distData: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[0] at parallelize at <console>:29

scala> sc.toRedisKV(distData)

读取Redis(RDD)

scala> val stringRDD = sc.fromRedisKV("key*").map{ kv => kv._2 }
stringRDD: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[3] at map at <console>:27

scala> val values = stringRDD.collect()
values: Array[String] = Array(world, hello, v1, Kong, Hong)

scala> println(values.mkString(","))
world,hello,v1,Kong,Hong

Spark DataFrame写入Redis

scala> case class Person(name: String, age: Int)
defined class Person

scala> val personSeq = Seq(Person("John", 30), Person("Peter", 45))
personSeq: Seq[Person] = List(Person(John,30), Person(Peter,45))

scala> val df = spark.createDataFrame(personSeq)
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

scala> df.write.format("org.apache.spark.sql.redis").option("table", "person").save()
                                                                                

参考文档

更多使用spark-redis的方式请参考官方文档:

  1. spark-redis Package:https://spark-packages.org/package/RedisLabs/spark-redis
  2. spark-redis Github:https://github.com/RedisLabs/spark-redis
相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
目录
相关文章
|
3月前
|
canal 缓存 NoSQL
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
根据对一致性的要求程度,提出多种解决方案:同步删除、同步删除+可靠消息、延时双删、异步监听+可靠消息、多重保障方案
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
|
3月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
45 0
|
2天前
|
SQL Oracle 数据库
使用访问指导(SQL Access Advisor)优化数据库业务负载
本文介绍了Oracle的SQL访问指导(SQL Access Advisor)的应用场景及其使用方法。访问指导通过分析给定的工作负载,提供索引、物化视图和分区等方面的优化建议,帮助DBA提升数据库性能。具体步骤包括创建访问指导任务、创建工作负载、连接工作负载至访问指导、设置任务参数、运行访问指导、查看和应用优化建议。访问指导不仅针对单条SQL语句,还能综合考虑多条SQL语句的优化效果,为DBA提供全面的决策支持。
20 11
|
1月前
|
SQL Java 数据库连接
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率。本文介绍了连接池的工作原理、优势及实现方法,并提供了HikariCP的示例代码。
53 3
|
1月前
|
SQL Java 数据库连接
打破瓶颈:利用Java连接池技术提升数据库访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,避免了频繁的连接建立和断开,显著提升了数据库访问效率。常见的连接池库包括HikariCP、C3P0和DBCP,它们提供了丰富的配置选项和强大的功能,帮助优化应用性能。
59 2
|
1月前
|
NoSQL 编译器 Linux
【赵渝强老师】Redis的安装与访问
本文基于Redis 6.2版本,详细介绍了在CentOS 7 64位虚拟机环境中部署Redis的步骤。内容包括安装GCC编译器、创建安装目录、解压安装包、编译安装、配置文件修改、启动服务及验证等操作。视频讲解和相关图片帮助理解每一步骤。
|
3月前
|
Oracle NoSQL 关系型数据库
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
613 2
|
3月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与实践
随着微服务架构的普及,如何高效管理和优化数据库访问成为了关键挑战。本文探讨了在微服务环境中优化数据库访问的策略,包括数据库分片、缓存机制、异步处理等技术手段。通过深入分析实际案例和最佳实践,本文旨在为开发者提供实际可行的解决方案,以提升系统性能和可扩展性。
|
3月前
|
SQL NoSQL Java
彻底革新你的数据库操作体验!Micronaut数据访问技巧让你瞬间爱上代码编写!
【9月更文挑战第10天】Java开发者们一直在寻找简化应用程序与数据库交互的方法。Micronaut作为一个现代框架,提供了多种工具和特性来提升数据访问效率。本文介绍如何使用Micronaut简化数据库操作,并提供具体示例代码。Micronaut支持JPA/Hibernate、SQL及NoSQL(如MongoDB),简化配置并无缝集成。通过定义带有`@Repository`注解的接口,可以实现Spring Data风格的命名查询。
74 6
下一篇
DataWorks