Knative 实践:从源代码到服务的自动化部署

本文涉及的产品
应用实时监控服务-用户体验监控,每月100OCU免费额度
性能测试 PTS,5000VUM额度
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 通过之前的文章,相信大家已经熟悉了 Serving、Eventing 以及 Tekton。那么在实际使用中,我们往往会遇到一些复杂的场景,这时候就需要各个组件之间进行协作处理。例如我们提交源代码之后是否直接可以部署服务到 K8s 中? 这个场景对于用户来说很有吸引力。

通过之前的文章,相信大家已经熟悉了 Serving、Eventing 以及 Tekton。那么在实际使用中,我们往往会遇到一些复杂的场景,这时候就需要各个组件之间进行协作处理。例如我们提交源代码之后是否直接可以部署服务到 K8s 中? 这个场景对于用户来说很有吸引力。那么现在就让我们来看一下,在 Knative 中如何实现从代码到服务?

场景介绍

现在的场景是这样的:代码构建->事件驱动->服务部署。那么对应到 Knative 中,需要 Eventing、Tekton 和 Serving 一起协作来实现这个场景。

c1


准备

  • 部署 Knative。参考在阿里云容器服务上部署 Knative
  • 部署 Tekton。通过阿里云容器服务控制台,应用目录选择 ack-tekton-pipelines 进行安装部署 Tekton;

      c2

  • 部署 GitHub 事件源。阿里云容器服务控制台 Knative 组件管理中选择安装 GitHub 组件,如图所示:

c3

从源代码到服务

c4

  • 修改分支代码,提交 merge request 合并到 master 分支;
  • Eventing 监听到 merge 事件,发送给 GitHub Trigger 服务;
  • GitHub Trigger 服务接收事件, 通过 Tekton 执行代码构建和并通过 deployer 执行服务部署。GitHub  Trigger 的作用就是解析 GitHub 事件的详细信息,然后转换成 Tekton 资源并且提交到 Kubernetes 中执行 Pipeline。项目地址:https://github.com/knative-sample/tekton-serving。 这个项目中有两个部分: Trigger 和 Deployer,Trigger 的作用是解析 github 事件, 并提交 PipelineRun 定义。Deployer 的作用就是更新 Service 的镜像信息。github source pull_request body 的关键内容如下:
{
  "action": "closed",
    ... ...
    "merge_commit_sha": "f37cb28b1777a28cd34ea1f8df1b7ebcc6c16397",
    ... ...
    "base": {
      "ref": "master",
      ... ...
      },
    ... ...
}
  • action 表示当前的 pull request 事件细节。创建 pull request 时 action  是 opened ,关闭 pull request 时 action 就是 closed;
  • merge_commit_sha 可以获得 merge commit 的 id;
  • base.ref 可以获得 merge request 发生在哪个分支上。

本文涉及到的代码与资源文件地址:

接下来我们开始一步步搞起。

部署 Tekton 服务

我们看一下创建代码构建 Task 和 部署服务Task。

代码构建Task:

apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
  name: source-to-image
spec:
  inputs:
    resources:
      - name: git-source
        type: git
    params:
      - name: pathToContext
        description: The path to the build context, used by Kaniko - within the workspace
        default: .
      - name: pathToDockerFile
        description: The path to the dockerfile to build (relative to the context)
        default: Dockerfile
      - name: imageUrl
        description: Url of image repository
      - name: imageTag
        description: Tag to apply to the built image
        default: "latest"
  steps:
    - name: build-and-push
      image: registry.cn-hangzhou.aliyuncs.com/knative-sample/kaniko-project-executor:v0.10.0
      command:
        - /kaniko/executor
      args:
        - --dockerfile=${inputs.params.pathToDockerFile}
        - --destination=${inputs.params.imageUrl}:${inputs.params.imageTag}
        - --context=/workspace/git-source/${inputs.params.pathToContext}
      env:
      - name: DOCKER_CONFIG
        value: /builder/home/.docker

这里通过 deployer-deployer 执行服务部署,部署服务Task:

apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
  name: image-to-deploy
spec:
  inputs:
    resources:
      - name: git-source
        type: git
    params:
      - name: pathToYamlFile
        description: The path to the yaml file to deploy within the git source
      - name: imageUrl
        description: Url of image repository
      - name: imageTag
        description: Tag of the images to be used.
        default: "latest"
  steps:
    - name: deploy
      image: "registry.cn-hangzhou.aliyuncs.com/knative-sample/deployer-deployer:7620096e"
      args:
        - "--namespace=default"
        - "--serivce-name=hello-sample"
        - "--image=${inputs.params.imageUrl}:${inputs.params.imageTag}"

另外需要设置一下镜像仓库的 secret:

apiVersion: v1
kind: Secret
metadata:
  name: ack-cr-push-secret
  annotations:
    tekton.dev/docker-0: https://registry.cn-hangzhou.aliyuncs.com
type: kubernetes.io/basic-auth
stringData:
  username: <cleartext non-encoded>
  password: <cleartext non-encoded>

执行如下命令:

# Create Pipeline
kubectl apply -f tekton/pipeline/build-and-deploy-pipeline.yaml

# Create PipelineResource
kubectl apply -f tekton/resources/picalc-git.yaml

# Create image secret
kubectl apply -f tekton/image-secret.yaml

# Create task: soruce to image
kubectl apply -f tekton/tasks/source-to-image.yaml

# Create task: deploy the image to cluster
kubectl apply -f tekton/tasks/image-to-deployer.yaml

部署 Knative Serving 服务

先创建 deployer-github-trigger 服务,用于接收 GitHub 事件,并触发 Tekton Pipeline 构建任务。其中 service.yaml 如下:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
  name: deployer-github-trigger
spec:
  template:
    spec:
      containers:
      - image: registry.cn-hangzhou.aliyuncs.com/knative-sample/deployer-trigger:tekton-v1_74647e3a-20190806093544
        args:
          - --trigger-config=/app/config/deployer-trigger.yaml
        volumeMounts:
        - name: config-volume 
          mountPath: /app/config
      serviceAccountName: tekton
      volumes:
        - name: config-volume 
          configMap:
            name: deployer-trigger-config
            items:
              - key: deployer-trigger.yaml
                path: deployer-trigger.yaml

这里通过 ConfigMap deployer-trigger-config, 设置 PipelineRun。deployer-github-trigger 能根据 github Event 信息获取代码仓库的最新信息但不能自动决定 PipelineRun 的定义,所以需要指定一个 PipelineRun 的模板。Trigger 通过 --trigger-config 参数指定 PipelineRun 的模板, 模板内容如下:

apiVersion: v1
kind: ConfigMap
metadata:
  name: deployer-trigger-config
  namespace: default
data:
  "deployer-trigger.yaml": |-
    apiVersion: tekton.dev/v1alpha1
    kind: PipelineRun
    metadata:
      name: tekton-kn-sample
    spec:
      pipelineRef:
        name: build-and-deploy-pipeline
      resources:
        - name: git-source
          resourceRef:
            name: eventing-tekton-serving-git
      params:
        - name: pathToContext
          value: "src"
        - name: pathToYamlFile
          value: ""
        - name: imageUrl
          value: "registry.cn-hangzhou.aliyuncs.com/knative-sample/eventing-tekton-serving-helloworld"
        - name: imageTag
          value: "1.0"
      trigger:
        type: manual
      serviceAccount: pipeline-account

执行命令如下:

# Create clusterrole
kubectl apply -f serving/clusterrole.yaml

# Create clusterrolebinding
kubectl apply -f serving/clusterrolebinding.yaml

# Create serviceaccount
kubectl apply -f serving/serviceaccount.yaml

# Create configmap
kubectl apply -f serving/configmap.yaml

# Create service
kubectl apply -f serving/service.yaml

配置 Eventing 中 GitHub 事件源

代码 merge request 会触发对应的事件,通过 Knative Eventing 获取到事件之后直接将事件发送给 deployer-github-trigger 服务。

创建 GitHub Token

创建 Personal access tokens, 用于访问 GitHub API。另外你的代码将使用它验证来自 github 的传入 webhook(secret token)。token 的名称可以任意设置。Source 需要开启 repo:public_repoadmin:repo_hook , 以便通过公共仓库触发 Event 事件,并为这些公共仓库创建 webhooks 。

下面是设置一个 "GitHubSource Sample" token 的示例。

c5

更新 githubsecret.yaml 内容。如果生成的是 personal_access_token_value token, 则需要设置 secretToken 如下:

apiVersion: v1
kind: Secret
metadata:
  name: githubsecret
type: Opaque
stringData:
  accessToken: personal_access_token_value
  secretToken: asdfasfdsaf

执行命令使其生效:

kubectl  apply -f eventing/githubsecret.yaml

创建 GitHub 事件源

为了接收 GitHub 产生的事件, 需要创建 GitHubSource 用于接收事件。

apiVersion: sources.eventing.knative.dev/v1alpha1
kind: GitHubSource
metadata:
  name: deployer-github-sources
spec:
  eventTypes:
  - pull_request
  ownerAndRepository: knative-sample/eventing-tekton-serving
  accessToken:
    secretKeyRef:
      name: githubsecret
      key: accessToken
  secretToken:
    secretKeyRef:
      name: githubsecret
      key: secretToken
  sink:
    apiVersion: serving.knative.dev/v1alpha1
    kind: Service
    name: deployer-github-trigger

关键字段解释:

  • 指定 github 仓库:ownerAndRepository: knative-sample/eventing-tekton-serving 表示监听 https://github.com/knative-sample/eventing-tekton-serving 仓库的事件;
  • 事件类型:eventTypes 是一个数组,这个数组中可以配置 github 事件列表;
  • 认证信息:accessToken 和 secretToken 是通过 secret 引用 github 仓库的认证信息;
  • 目标 Service:sink 字段表示接收到的事件需要发送到哪个 Service , 这里是直接发送到前面定义的 deployer-github-trigger 服务。

执行 kubectl 命令:

kubectl  apply -f eventing/github-source.yaml

如果集群中开启了 Istio 注入,需要开启 egress 访问:

kubectl  apply -f eventing/egress.yaml

deployer-github-sources 提交到 Kubernetes 之后,github source controller 会在 http://github.com/knative-sample/eventing-tekton-serving 下创建一个 webhook,回调地址就是我们的 github_receive_adapter 服务公网地址。

http://github.com/knative-sample/eventing-tekton-serving 有 pull request 发生时就会自动触发 deployer-github-trigger 的执行,deployer-github-trigger 首先编译镜像,然后更新 hello-sample service 镜像,从而完成自动化发布。

代码->镜像->服务

下面我们演示一下从代码到服务,自动化构建和部署过程:

c6

服务访问体验地址:http://hello-sample.default.serverless.kuberun.com

结论

从代码到服务,通过上面的示例,Knative 是否给你带来了不一样的体验?希望通过 Knative 给你带来更轻松的代码构建和服务部署,让你更专注于业务本身。欢迎对 Knative 有兴趣的一起交流。

欢迎加入 Knative 交流群

c7

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
8天前
|
敏捷开发 人工智能 Devops
探索自动化测试的高效策略与实践###
当今软件开发生命周期中,自动化测试已成为提升效率、保障质量的关键工具。本文深入剖析了自动化测试的核心价值,探讨了一系列高效策略,包括选择合适的自动化框架、设计可维护的测试脚本、集成持续集成/持续部署(CI/CD)流程,以及有效管理和维护测试用例库。通过具体案例分析,揭示了这些策略在实际应用中的成效,为软件测试人员提供了宝贵的经验分享和实践指导。 ###
|
8天前
|
机器学习/深度学习 人工智能 jenkins
软件测试中的自动化与持续集成实践
在快速迭代的软件开发过程中,自动化测试和持续集成(CI)是确保代码质量和加速产品上市的关键。本文探讨了自动化测试的重要性、常见的自动化测试工具以及如何将自动化测试整合到持续集成流程中,以提高软件测试的效率和可靠性。通过案例分析,展示了自动化测试和持续集成在实际项目中的应用效果,并提供了实施建议。
|
8天前
|
Java 测试技术 持续交付
探索自动化测试在软件开发中的关键作用与实践
在现代软件开发流程中,自动化测试已成为提升产品质量、加速交付速度的不可或缺的一环。本文深入探讨了自动化测试的重要性,分析了其在不同阶段的应用价值,并结合实际案例阐述了如何有效实施自动化测试策略,以期为读者提供一套可操作的实践指南。
|
6天前
|
Devops jenkins 测试技术
DevOps实践:自动化部署与持续集成的融合之旅
【10月更文挑战第41天】在软件开发的世界中,快速迭代和高效交付是企业竞争力的关键。本文将带你走进DevOps的核心实践——自动化部署与持续集成,揭示如何通过它们提升开发流程的效率与质量。我们将从DevOps的基本理念出发,逐步深入到具体的技术实现,最终展示一个实际的代码示例,让理论与实践相结合,为你的开发旅程提供清晰的指引。
16 4
|
8天前
|
Web App开发 敏捷开发 测试技术
探索自动化测试的奥秘:从理论到实践
【10月更文挑战第39天】在软件质量保障的战场上,自动化测试是提升效率和准确性的利器。本文将深入浅出地介绍自动化测试的基本概念、必要性以及如何实施自动化测试。我们将通过一个实际案例,展示如何利用流行的自动化测试工具Selenium进行网页测试,并分享一些实用的技巧和最佳实践。无论你是新手还是有经验的测试工程师,这篇文章都将为你提供宝贵的知识,帮助你在自动化测试的道路上更进一步。
|
8天前
|
敏捷开发 Java 测试技术
探索自动化测试:从理论到实践
【10月更文挑战第39天】在软件开发的海洋中,自动化测试是一艘能够带领团队高效航行的船只。本文将作为你的航海图,指引你理解自动化测试的核心概念,并分享一段实际的代码旅程,让你领略自动化测试的魅力和力量。准备好了吗?让我们启航!
|
9天前
|
机器学习/深度学习 数据采集 人工智能
智能运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的兴起背景、核心组件及其在现代IT运维中的应用。通过对比传统运维模式,阐述了AIOps如何利用机器学习、大数据分析等技术,实现故障预测、根因分析、自动化修复等功能,从而提升系统稳定性和运维效率。文章还深入分析了实施AIOps面临的挑战与解决方案,并展望了其未来发展趋势。 ####
|
10天前
|
数据采集 IDE 测试技术
Python实现自动化办公:从基础到实践###
【10月更文挑战第21天】 本文将探讨如何利用Python编程语言实现自动化办公,从基础概念到实际操作,涵盖常用库、脚本编写技巧及实战案例。通过本文,读者将掌握使用Python提升工作效率的方法,减少重复性劳动,提高工作质量。 ###
24 1
|
13天前
|
测试技术 API Android开发
探索软件测试中的自动化框架选择与实践####
本文深入探讨了软件测试领域内,面对众多自动化测试框架时,如何依据项目特性和团队需求做出明智选择,并分享了实践中的有效策略与技巧。不同于传统摘要的概述方式,本文将直接以一段实践指南的形式,简述在选择自动化测试框架时应考虑的核心要素及推荐路径,旨在为读者提供即时可用的参考。 ####
|
16天前
|
运维 负载均衡 Ubuntu
自动化运维的利器:Ansible入门与实践
【10月更文挑战第31天】在当今快速发展的信息技术时代,高效的运维管理成为企业稳定运行的关键。本文将引导读者了解自动化运维工具Ansible的基础概念、安装步骤、基本使用,以及如何通过实际案例掌握其核心功能,从而提升工作效率和系统稳定性。
下一篇
无影云桌面