「数据治理那点事」系列之三:不忘初心方得始终,数据质量管理要稳住!

简介: 本文主要讲数据治理中的重要工作:数据质量管理。 从数据质量管理的目标,质量问题产生的根源,讲到如何评估数据质量,如何贯彻数据质量管理流程,最后从取与舍两个角度谈谈我对质量问题的一些个人观点。

作者 | 蒋珍波

本文是数据治理系列文章的第三篇,主要讲数据治理中的重要工作:数据质量管理。

我将从数据质量管理的目标,质量问题产生的根源,讲到如何评估数据质量,如何贯彻数据质量管理流程,最后从取与舍两个角度谈谈我对质量问题的一些个人观点。

一、数据质量管理的目标

数据质量管理主要解决「数据质量现状如何,谁来改进,如何提高,怎样考核」的问题。

为什么这篇文章的标题中有“不忘初心方得始终”这几个字呢。因为最开始的关系型数据库时代,做数据治理最主要的目的,就是为了提升数据质量,让报表、分析、应用更加准确。时至今日,虽然数据治理的范畴扩大了很多,我们开始讲数据资产管理、知识图谱、自动化的数据治理等等概念,但是提升数据的质量,依然是数据治理最重要的目标之一。

为什么数据质量问题如此重要?

因为数据要能发挥其价值,关键在于其数据的质量的高低,高质量的数据是一切数据应用的基础。

如果一个组织根据劣质的数据分析业务、进行决策,那还不如没有数据,因为通过错误的数据分析出的结果往往会带来“精确的误导”,对于任何组织来说,这种“精确误导”都无异于一场灾难。

根据统计,数据科学家和数据分析员每天有30%的时间浪费在了辨别数据是否是“坏数据”上,在数据质量不高的环境下,做数据分析可谓是战战兢兢。可见数据质量问题已经严重影响了组织业务的正常运营。通过科学的数据质量管理,持续地提升数据质量,已经成为组织内刻不容缓的优先任务。

二、数据质量问题从何而来?

做数据质量管理,首先要搞清楚数据质量问题产生的原因。原因有多方面,比如在技术、管理、流程方面都会碰到。但从根本上来时,数据质量问题产生的大部分原因在于业务上,也就是管理不善。许多表面上的技术问题,深究下去,其实还是业务问题。

我在给客户做数据治理咨询的时候,发现很多客户认识不到数据质量问题产生的根本原因,局限于只想从技术角度来解决问题,希望通过购买某个工具就能解决质量问题,这当然达不到理想的效果。经过和客户交流以及双方共同分析之后,大部分组织都能认识到数据质量问题产生的真正根源,从而开始从业务着手解决数据质量问题了。

从业务角度着手解决数据质量问题,重要的是建立一套科学、可行的数据质量评估标准和管理流程。

三、数据质量评估的标准

当我们谈到数据质量管理的时候,我们必须要有一个数据质量评估的标准,有了这个标准,我们才能知道如何评估数据的质量,才能把数据质量量化,并知道改进的方向,比较改进后的效果。

目前业内认可的数据质量的标准有:

准确性: 描述数据是否与其对应的客观实体的特征相一致。

完整性: 描述数据是否存在缺失记录或缺失字段。

一致性: 描述同一实体的同一属性的值在不同的系统是否一致

有效性: 描述数据是否满足用户定义的条件或在一定的域值范围内。

唯一性: 描述数据是否存在重复记录。

及时性: 描述数据的产生和供应是否及时。

稳定性: 描述数据的波动是否是稳定的,是否在其有效范围内。

以上数据质量标准只是一些通用的规则,这些标准是可以根据数据的实际情况和业务要求进行扩展的,如交叉表校验等。

四、数据质量管理流程

要提升数据质量,需要以问题数据为切入点,注重问题的分析、解决、跟踪、持续优化、知识积累,形成数据质量持续提升的闭环。

首先需要梳理和分析数据质量问题,摸清楚数据质量的现状;然后针对不同的质量问题选择适合的解决办法,制定出详细的解决方案;接着是问题的认责,追踪方案执行的效果,监督检查,持续优化;最后形成数据质量问题解决的知识库,以供后来者参考。上述步骤不断迭代,形成数据质量管理的闭环。

很显然,要管理好数据质量,仅有工具支撑是远远不够的,必须要组织架构、制度流程参与进来,做到数据的认责,数据的追责。这和我在第一篇文章《数据治理:那些年,我们一起踩过的坑》中阐述的观点是一致的,大家可以参考那篇文章。

五、数据质量管理的取与舍

企业也好,政府也好,从来不是生活在真空之中,而是被社会紧紧地包裹。解决任何棘手的问题,都必须考虑到社会因素的影响,做适当的取舍。

第一个取舍:数据质量管理流程。前面讲到的数据质量管理流程,是一个相对理想的状态,但是不同的组织内部,其实施的力度都是不同的,以数据追责为例:在企业内部推行还具有一定的可行性,但是在政府就很难适用。因为政府部门的大数据项目,牵头单位无论是谁,很可能没有相关的权限。举个例子:你很难想像市经信委去跟市政府办公厅进行数据质量的问责。这与数据治理的建设方在整个大的组织体系中的话语权有很大的关系。这就是我们做数据治理必须接受的现实。遇到这种问题,我们只能迂回地做些事情,尽量弥补某个环节缺失带来的不利影响,比如和数据提供方一起建立起数据清洗的规则,对来源数据做清洗,尽量达到可用的标准。

第二个取舍:不同时间维度上的数据采取不同的处理方式。从时间维度上划分,数据主要有三类:未来数据、当前数据、历史数据。在解决不同种类的数据质量问题时,需要考虑取舍之道,采取不同的处理方式。

相关文章
|
12天前
|
数据可视化 项目管理
项目管理怎么做?四大项目管理模型详解,让你的项目不再“忙而无效”!
本文介绍四大经典项目管理模型:瀑布模型(适合需求明确的项目)、Scrum模型(适合需求频繁变化的项目)、增量模型(分阶段推进,逐步完成)和风险管理模型(防患于未然)。同时推荐几款常用工具,如板栗看板、Trello和Asana,帮助团队更高效地协作。
36 0
|
1月前
|
数据采集 存储 监控
CDGA|做好数据治理的几个策略,不看后悔
做好数据治理是企业实现数字化转型和智能化升级的关键。通过明确目标、建立组织、制定标准、实施质量管理、促进共享与协作以及持续优化与迭代等策略,企业可以构建完善的数据治理体系,提升数据价值,为业务决策提供有力支持。在未来的发展中,数据治理将成为企业核心竞争力的重要组成部分。
|
1月前
|
数据采集 人工智能 监控
揭秘数据治理:七步工作法&十大准则全解析
数据治理的“七步工作法”与“十大准则”为企业构建科学、系统、高效的数据治理体系提供了重要的指导和借鉴。企业应结合自身实际情况,灵活运用这些方法和准则,充分挖掘数据潜能,赋能业务创新,实现数字化转型的稳健推进。
|
6月前
|
机器学习/深度学习 数据采集 监控
数据分析师的主要工作内容涉及哪些方面?
【4月更文挑战第4天】数据分析师的主要工作内容涉及哪些方面?
85 8
|
存储 运维 架构师
经验教训:微服务设计时的五条宝贵经验
在著名软件著作《人月神话》中提到,软件世界没有“银弹”,这句话当然适用于架构领域,随着从单体架构过渡到微服务架构,因为将原有系统打散,给系统增加了许多不稳定因素。
99 0
|
项目管理
【项目开发计划制定工作经验之谈】
【项目开发计划制定工作经验之谈】
115 1
|
数据采集 监控 安全
数据治理工作的8种推进套路(下)
数据治理工作的8种推进套路(下)
数据治理工作的8种推进套路(下)
|
数据采集 测试技术 BI
数据治理工作的8种推进套路
数据治理工作的8种推进套路
好的软件研发管理怎么做
好的软件研发管理怎么做
219 0
|
数据采集 供应链 监控
谈谈如何进行数据质量管理【经验分享】
在本文中,我们讨论了有关组织如何衡量和改善数据质量的一些技巧。
谈谈如何进行数据质量管理【经验分享】