日志服务数据加工: 性能指南

本文涉及的产品
对象存储 OSS,标准 - 本地冗余存储 20GB 3个月
对象存储 OSS,恶意文件检测 1000次 1年
日志服务 SLS,月写入数据量 50GB 1个月
简介: 本篇介绍日志服务数据加工的性能主要因素, 以及如何合理规划源logstore, 目标logstor和加工任务配置来满足数据加工的性能要求.

性能指标参考

参考原理, 数据加工任务的总体速度取取决于源shard的数量、用户配置的规则逻辑和复杂度有关, 一般可以按照1MB每秒每shard(=85GB每天每shard)规划.
例如: 源logstore的数据写入速度是每天1TB, 那么需要分裂源logstore的shard数量为1024GB/85=12个.

数据加工与性能的关系

数据加工的速率与加工的规则有关, 具体体现如下:

输出写入相关:

  • 事件大小相关: 写入事件越多(进行了分裂), 写入事件字段越多, 内容越长, 写入的数据包计算与网络量消耗越大, 速度越慢. 反之越快.
  • 事件分组相关: 写入目标越多, 事件标签TAG越多, 输出的数据包日志组越多, 网络交互越多, 速度越慢. 反之越快.

加工逻辑相关:

  • 加工逻辑约复杂, 搜索计算等越多, 使用频繁外部资源同步, 对计算与网络消耗越大, 速度越慢. 反之越快.

源logstore实时数据加工扩展

可以通过增加shard数量来实现扩展.

源logstore历史数据加工扩展

shard分裂仅仅对新写入数据有关. 如果历史数据量较大, 且shard数量较少的情况下. 可以对源logstore构建多个数据加工任务, 支持分别配置无重叠的加工时间即可. 注意: 加工时间是日志接收时间即可, 具体配置参考控制台配置

目标Logstore的扩展

目标Logstore的shard数量主要由2个方面决定:

  1. 数据加工的写入速率. Logstore单个Shard的写入速率上线是5MB/s, 因此可以根源logstore的shard数量, 加工的并发读来估算.
    例如源logstore有20个shard, 那么推荐目标logstore至少有4个shard.
  2. 目标logstore的是否有建立索引, 做查询统计的需求, 如果目标Logstre希望建立索引并且进行统计查询(SQL), 那么建议基于SQL统计每次查询的覆盖范围是: 每5000万条日志一个shard的粒度来规划.
    例如, 每天加工并写入10GB日志, 每条1KB的话, 有1千万条日志每天规模, 每次查询和统计希望可以覆盖30天数据量, 其总体日志量大约是3亿条日志, 建议目标logstore的shard数量规划为6个shard.

进一步参考

欢迎扫码加入官方钉钉群获得实时更新与阿里云工程师的及时直接的支持:
image

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
28天前
|
存储 调度 C++
16 倍性能提升,成本降低 98%! 解读 SLS 向量索引架构升级改造
大规模数据如何进行语义检索? 当前 SLS 已经支持一站式的语义检索功能,能够用于 RAG、Memory、语义聚类、多模态数据等各种场景的应用。本文分享了 SLS 在语义检索功能上,对模型推理和部署、构建流水线等流程的优化,最终带给用户更高性能和更低成本的针对大规模数据的语义索引功能。
211 15
|
2月前
|
SQL 人工智能 监控
SLS Copilot 实践:基于 SLS 灵活构建 LLM 应用的数据基础设施
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
618 54
|
2月前
|
数据采集 运维 监控
不重启、不重写、不停机:SLS 软删除如何实现真正的“无感数据急救”?
SLS 全新推出的「软删除」功能,以接近索引查询的性能,解决了数据应急删除与脏数据治理的痛点。2 分钟掌握这一数据管理神器。
222 28
|
3月前
|
存储 缓存 Apache
StarRocks+Paimon 落地阿里日志采集:万亿级实时数据秒级查询
A+流量分析平台是阿里集团统一的全域流量数据分析平台,致力于通过埋点、采集、计算构建流量数据闭环,助力业务提升流量转化。面对万亿级日志数据带来的写入与查询挑战,平台采用Flink+Paimon+StarRocks技术方案,实现高吞吐写入与秒级查询,优化存储成本与扩展性,提升日志分析效率。
450 1
|
3月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL数据库的WAL日志与数据写入的过程
PostgreSQL中的WAL(预写日志)是保证数据完整性的关键技术。在数据修改前,系统会先将日志写入WAL,确保宕机时可通过日志恢复数据。它减少了磁盘I/O,提升了性能,并支持手动切换日志文件。WAL文件默认存储在pg_wal目录下,采用16进制命名规则。此外,PostgreSQL提供pg_waldump工具解析日志内容。
298 0
|
3月前
|
数据采集 运维 监控
|
5月前
|
存储 NoSQL MongoDB
Docker中安装MongoDB并配置数据、日志、配置文件持久化。
现在,你有了一个运行在Docker中的MongoDB,它拥有自己的小空间,对高楼大厦的崩塌视而不见(会话丢失和数据不持久化的问题)。这个MongoDB的数据、日志、配置文件都会妥妥地保存在你为它精心准备的地方,天旋地转,它也不会失去一丁点儿宝贵的记忆(即使在容器重启后)。
606 4
|
6月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
763 54

相关产品

  • 日志服务