【物联网智能网关-05】扫描键盘编程设计

简介: .NET Micro Framework模拟器提供了5个模拟按键(上、下、左、右和确认按键),所以一般.NET MF开发板也只需要提供5个按键就可以了,而这5个键,也是直接和CPU的pin脚相连,用GPIO的输入相关的函数就可以操作了,使用非常简单。

.NET Micro Framework模拟器提供了5个模拟按键(上、下、左、右和确认按键),所以一般.NET MF开发板也只需要提供5个按键就可以了,而这5个键,也是直接和CPU的pin脚相连,用GPIO的输入相关的函数就可以操作了,使用非常简单。

但是对一些特殊的应用,如一些.NET Micro Framework教育箱或一些工业实际用的系统,5个按键显然太少了点。但是如果需要十几个按键,如果直连芯片pin脚,显然占用的资源比较多了,也会导致其它的功能无法使用了,这时候最常用的就是扫描键盘了。
image.png

上述扫描键盘的原理图应该是最简单的一种了,复杂一点的,在行或列上,通过一个上拉电阻接VCC。这样,我们只需要8个pin脚,就可以获取16个按键的信息了。

一般实现的思路也比较简单:就是把行(或列)接芯片输出pin脚,把列(或行)接芯片输入pin脚,输出pin脚依次输出低(或高,需要看电路中接的上拉还是下拉电阻)电平,然后检查输入pin脚的电平变化。如果有变化,那么就说明,该列和该行的按键被按下了。

往往这个判断就放在while循环或线程里,不断的去运行。对一些单片而言,如果实现的功能单一,这样做也无可厚非,但是对一个系统平台来说,如果也这样做,显然对系统的资源占用还是比较厉害的。

所以最好的办法还是要采用中断的方式,平时的时候不去判断,靠中断触发,一旦中断触发了,然后再启动一轮判断,确定是哪一个按键被按下了。

1、扫描方式实现按键获取

public class ScanKeypad

    {

        public event NativeEventHandlerOnInterrupt;

 

        OutputPort[]rows = null;

        InputPort[]cols = null;

        publicScanKeypad(Cpu.Pin[]Output_Pins, Cpu.Pin[]Input_Pins)

        {

            rows = newOutputPort[] { newOutputPort(Output_Pins[0], false), new OutputPort(Output_Pins[1], false), new OutputPort(Output_Pins[2], false), new OutputPort(Output_Pins[3], false) };

            cols = newInputPort[] { newInputPort(Input_Pins[0], true, Port.ResistorMode.PullUp), newInputPort(Input_Pins[1], true, Port.ResistorMode.PullUp), newInputPort(Input_Pins[2], true, Port.ResistorMode.PullUp), newInputPort(Input_Pins[3], true, Port.ResistorMode.PullUp) };

 

            ThreadthreadKeypad = new Thread(new ThreadStart(KeypadScan));

            threadKeypad.Start();

        }

 

        voidKeypadScan()

        {

            intkey = -1, oldKey = -1;

            while(true)

            {

                key = -1;

                for(int i = 0; i < rows.Length; i++)

                {

                    rows[i].Write(false);

                    for(int j = 0; j < cols.Length; j++)

                    {

                        if (!cols[j].Read())

                        {

                            key = i *rows.Length + j;

                            break;

                        }

                    }

                    rows[i].Write(true);

                    if(key > -1) break;

                }

                if(key > -1 && key != oldKey)

                {

                    if(OnInterrupt != null) OnInterrupt((uint)key, 1, DateTime.Now);

                    oldKey = key;

                }

                elseif (oldKey > -1 && key == -1)

                {

                    if(OnInterrupt != null) OnInterrupt((uint)oldKey, 0, DateTime.Now);

                    oldKey = -1;

                }

                Thread.Sleep(100);

            }

        }

    }

2、中断方式实现按键获取

public class InterruptKeypad

    {

        public event NativeEventHandlerOnInterrupt;

 

        OutputPort[]rows = null;

        InterruptPort[]cols = null;

        Cpu.Pin[] Pins = null;

        uintkey = 0;

        publicInterruptKeypad(Cpu.Pin[]Output_Pins, Cpu.Pin[]Input_Pins)

        {

            rows = newOutputPort[] { newOutputPort(Output_Pins[0], false), new OutputPort(Output_Pins[1], false), new OutputPort(Output_Pins[2], false), new OutputPort(Output_Pins[3], false) };

            cols = newInterruptPort[Input_Pins.Length];

            Pins = Input_Pins;

            for(int i = 0; i < Input_Pins.Length; i++)

            {

                cols[i] = new InterruptPort(Input_Pins[i],true, Port.ResistorMode.PullUp, Port.InterruptMode.InterruptEdgeBoth);

                cols[i].OnInterrupt += new NativeEventHandler(InterruptKeypad_OnInterrupt);

            }

        }

 

        privateuint GetPinIndex(uintpin)

        {

            for(uint i = 0; i < Pins.Length; i++)

            {

                if(pin == (uint)Pins[i]) returni;

            }

            return0;

        }

 

        voidInterruptKeypad_OnInterrupt(uint data1, uint data2, DateTimetime)

        {

            if(data2 == 1)

            {

                for(int i = 0; i < cols.Length; i++)

                {

                    cols[i].OnInterrupt -= new NativeEventHandler(InterruptKeypad_OnInterrupt);

                }

                //--

                uintcol = GetPinIndex(data1);

                for(int i = 0; i < rows.Length; i++)

                {

                    rows[i].Write(true);

                    if(cols[col].Read())

                    {

                        key = (uint)(i * rows.Length + col);

                        Thread threadKeypad = new Thread(new ThreadStart(KeypadRun));

                        threadKeypad.Start();

                        break;

                    }

                }

                //--

                for(int i = 0; i < rows.Length; i++)rows[i].Write(false);

                for(int i = 0; i < cols.Length; i++)

                {

                    cols[i].OnInterrupt += new NativeEventHandler(InterruptKeypad_OnInterrupt);

                }

            }

        }

 

        voidKeypadRun()

        {

            OnInterrupt(key, 1, DateTime.Now);

            OnInterrupt(key, 0, DateTime.Now);

        }

    }

注意,中断方式中,触发事件必须放在线程里执行,否则会有问题(如果在Winform中使用,最好不用线程,而用winfrom提供的timer,否则就无法直接操作UI了,那就必须用委托方式了,和windows上的编程类似)。

问题点1:由于我们采用的键盘并没有加上拉(或下拉)电阻电路,在最初做这个程序的时候,InputPort(Input_Pins[1], true,Port.ResistorMode.PullUp),最后一个参数,底层并没有实现内部上拉,下拉和悬空功能,所以设置是无效的。这就造成了,在按钮没有按下时,输入pin脚的状态是未知的,有时候是1,有时候是0,程序是无法正确运行的。

此外STM32F103和STM32F207的GPIO寄存器差别很大,内部实现上拉、下拉的设置也是不同的。分别实现后,发现内部上拉正常,设置下拉效果不明显,pin脚的状态还是未知的。所以我们实现的程序都设置为上拉。

问题点2:在实现中断方式的扫描键盘的代码的时候,发现PB6、PC0和PB1三个pin脚触发中断异常,但是在NativeSample层面又正常。目前没有发现这三个pin脚有何特别之处,此问题以后待查。所以如果采用中断方式,这三个pin脚不能使用。

注:该问题已修正,需要更新固件(版本V1.6.10以上),另外示例需要参考最新的扫描键盘示例。

以上两种方式都是在应用层面实现的,其实如果扫描键盘的pin脚固定,更好的方式可以在底层用C++实现,并且还可以把8个物理pin脚,虚拟出16个pin脚来,用法和物理的pin脚完全一样。

官方SimpleWPFApplication示例,是一个比较典型的WPF应用,但是需要5个按键才能操作,我们的紫藤207系统仅提供了一个物理按钮,所以是无法操作的。接上扫描键盘后,我们就有可能完整的演示这个示例了,不过由于我们使用的是扫描键盘,所以原程序无法使用,必须做如下修改才可以。

    public sealed class GPIOButtonInputProvider

    {

        public readonly DispatcherDispatcher;

        privateDispatcherOperationCallback callback;

        privateInputProviderSite site;

        privatePresentationSource source;

 

        publicGPIOButtonInputProvider(PresentationSourcesource)

        {

            this.source= source;

            site = InputManager.CurrentInputManager.RegisterInputProvider(this);

            callback = newDispatcherOperationCallback(delegate(objectreport)

            {

                InputReportArgsargs = (InputReportArgs)report;

                returnsite.ReportInput(args.Device, args.Report);

            });

            Dispatcher = Dispatcher.CurrentDispatcher;

 

            Cpu.Pin[] Output_Pins = { (Cpu.Pin)GPIO_NAMES.PC8,(Cpu.Pin)GPIO_NAMES.PC9, (Cpu.Pin)GPIO_NAMES.PB7,(Cpu.Pin)GPIO_NAMES.PC2 };

            Cpu.Pin[] Input_Pins = { (Cpu.Pin)GPIO_NAMES.PC3,(Cpu.Pin)GPIO_NAMES.PA0, (Cpu.Pin)GPIO_NAMES.PA5,(Cpu.Pin)GPIO_NAMES.PA6 };

           

            InterruptKeypadkey = new InterruptKeypad(Output_Pins,Input_Pins);

            key.OnInterrupt += new NativeEventHandler(key_OnInterrupt);

        }

 

        voidkey_OnInterrupt(uint data1, uint data2, DateTimetime)

        {

            RawButtonActionsaction = (data2 != 0) ? RawButtonActions.ButtonUp: RawButtonActions.ButtonDown;

            RawButtonInputReportreport = new RawButtonInputReport(source,time, GetButton(data1), action);

            Dispatcher.BeginInvoke(callback, new InputReportArgs(InputManager.CurrentInputManager.ButtonDevice,report));

        }

 

        ButtonGetButton(uint data)

        {

            switch(data)

            {

                case2:

                    returnButton.VK_UP;

                case5:

                    returnButton.VK_LEFT;

                case6:

                    returnButton.VK_SELECT;

                case10:

                    returnButton.VK_DOWN;

                case7:

                    returnButton.VK_RIGHT;

            }

            returnButton.None;

        }

    }

把GpioButtonInputProvider.cs里面的程序这样修改后,就可以使用了。

效果图如下:
image.png

实际运行视频链接如下:

 http://v.youku.com/v_show/id_XNDI3ODU4OTg4.html

从视频可以看出,STM32F207平台运行WPF程序还是蛮流畅的。

------------------------------------------------------------------------------- 

下载地址:http://www.sky-walker.com.cn/MFRelease/Sample/ScanKey_WPFTest.rar     

MF简介:http://blog.csdn.net/yefanqiu/article/details/5711770

MF资料:http://www.sky-walker.com.cn/News.asp?Id=25

作者:叶帆
来源:CSDN
原文:https://blog.csdn.net/yfiot/article/details/7749732
版权声明:本文为博主原创文章,转载请附上博文链接!

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
6天前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
18天前
|
传感器 存储 运维
智能物联网:LoRaWAN技术在低功耗广域网中的应用
【10月更文挑战第26天】本文详细介绍了LoRaWAN技术的基本原理、应用场景及实际应用示例。LoRaWAN是一种低功耗、长距离的网络层协议,适用于智能城市、农业、工业监控等领域。文章通过示例代码展示了如何使用LoRaWAN传输温湿度数据,并强调了其在物联网中的重要性和广阔前景。
49 6
|
17天前
|
传感器 数据采集 监控
数据采集器和物联网网关的区别
数据采集器主要用于从各种数据源收集数据。这些数据源可以是传感器(如温度传感器、压力传感器等)、仪表(如电表、水表等)或者其他具有数据输出功能的设备。物联网网关是连接感知层(包含各种传感器和数据采集设备)和网络层(如互联网、局域网等)的关键设备。
44 4
|
17天前
|
传感器 监控 物联网
智能物联网:LoRaWAN技术在低功耗广域网中的应用
【10月更文挑战第27天】LoRaWAN技术是低功耗广域网(LPWAN)的重要代表,以其远距离通信、低功耗和低成本部署等优势,广泛应用于智能城市、农业监测和环境监测等领域。本文介绍LoRaWAN的工作原理及其实际应用,并提供示例代码展示如何使用LoRaWAN进行数据传输。
28 2
|
5天前
|
物联网 智能硬件
物联网技术:连接智能生活的桥梁
物联网技术:连接智能生活的桥梁
|
17天前
|
安全 物联网 物联网安全
智能物联网安全:物联网设备的防护策略与最佳实践
【10月更文挑战第27天】随着物联网技术的快速发展,智能设备已广泛应用于生活和工业领域。然而,物联网设备的安全问题日益凸显,主要威胁包括中间人攻击、DDoS攻击和恶意软件植入。本文探讨了物联网设备的安全防护策略和最佳实践,包括设备认证和加密、定期更新、网络隔离以及安全标准的制定与实施,旨在确保设备安全和数据保护。
34 0
|
5天前
|
存储 安全 物联网
政府在推动物联网技术标准和规范的统一方面可以发挥哪些作用?
政府在推动物联网技术标准和规范的统一方面可以发挥哪些作用?
67 50
|
5天前
|
安全 物联网 物联网安全
制定统一的物联网技术标准和规范的难点有哪些?
制定统一的物联网技术标准和规范的难点有哪些?
16 2
|
5天前
|
存储 数据采集 物联网
物联网技术在物流领域的应用会遇到哪些挑战?
物联网技术在物流领域的应用会遇到哪些挑战?
18 4
|
6天前
|
存储 传感器 物联网
未来已来:区块链、物联网与虚拟现实技术融合的新篇章
【10月更文挑战第38天】本文旨在探索新兴技术区块链、物联网(IoT)和虚拟现实(VR)在未来社会的应用前景。通过分析这些技术的发展趋势,我们将揭示它们如何相互交织,共同塑造一个更智能、更互联的世界。文章将不包含传统意义上的摘要内容,而是直接深入主题,展开讨论。

热门文章

最新文章

相关产品

  • 物联网平台