SLS机器学习最佳实战:日志聚类+异常告警

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
简介: 围绕日志,挖掘其中更大价值,一直是我们团队所关注。在原有日志实时查询基础上,今年SLS在DevOps领域完善了如下功能: - 上下文查询 - 实时Tail和智能聚类,以提高问题调查效率 - 提供多种时序数据的异常检测和预测函数,来做更智能的检查和预测 - 数据分析的结果可视化 - 强大的告...

0.文章系列链接



1.手中的锤子都有啥?

围绕日志,挖掘其中更大价值,一直是我们团队所关注。在原有日志实时查询基础上,今年SLS在DevOps领域完善了如下功能:

  • 上下文查询
  • 实时Tail和智能聚类,以提高问题调查效率
  • 提供多种时序数据的异常检测和预测函数,来做更智能的检查和预测
  • 数据分析的结果可视化
  • 强大的告警设置和通知,通过调用webhook进行关联行动
    1

今天我们重点介绍下,日志只能聚类和异常告警如何配合,更好的进行异常发现和告警

2.平台实验

2.1 实验数据

一份Sys Log的原始数据,,并且开启了日志聚类服务,具体的状态截图如下:
2

通过调整下面截图中红色框1的大小,可以改变图中红色框2的结果,但是对于每个最细粒度的pattern并不会改变,也就是说:子Pattern的结果是稳定且唯一的,我们可以通过子Pattern的Signature找到对应的原始日志条目。
3

2.2 生成子模式的时序信息

假设,我们对这个子Pattern要进行监控:

msg:vm-111932.tc su: pam_unix(*:session): session closed for user root
对应的 signature_id : __log_signature__: 1814836459146662485

我们得到了上述pattern对应的原始日志,可以看下具体的数量在时间轴上的直返图:
4

上图中,我们可以发现,这个模式的日志分布不是很均衡,其中还有一些是没有的,如果直接按照时间窗口统计数量,得到的时序图如下:

__log_signature__: 1814836459146662485 |  
select 
    date_trunc('minute', __time__) as time, 
    COUNT(*) as num 
from log GROUP BY time order by time ASC limit 10000

5

上述图中我们发现时间上并不是连续的。因此,我们需要对这条时序进行补点操作。

__log_signature__: 1814836459146662485 | 
select 
    time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, 
    avg(num) as num 
from  ( 
    select 
        __time__ - __time__ % 60 as time, 
        COUNT(*) as num 
    from log GROUP BY time order by time desc ) 
GROUP by time order by time ASC limit 10000

6

2.3 对时序进行异常检测

使用时序异常检测函数: ts_predicate_arma

__log_signature__: 1814836459146662485 | 
select 
    ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') 
from  ( 
    select 
        time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, 
        avg(num) as num 
    from  ( 
        select 
            __time__ - __time__ % 60 as time, 
            COUNT(*) as num 
        from log GROUP BY time order by time desc ) 
    GROUP by time order by time ASC ) limit 10000

7

2.4 告警该如何设置

  • 将机器学习函数的结果拆解开
__log_signature__: 1814836459146662485 | 
select 
    t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob 
from  ( 
    select 
        ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res 
    from  ( 
        select 
            time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, 
            avg(num) as num 
        from  ( 
            select 
                __time__ - __time__ % 60 as time, 
                COUNT(*) as num 
            from log GROUP BY time order by time desc ) 
        GROUP by time order by time ASC )) , unnest(res) as t(t1)

8

  • 针对最近两分钟的结果进行告警
__log_signature__: 1814836459146662485 | 
select 
    unixtime, src, pred, up, lower, prob 
from  ( 
    select 
        t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob 
    from  ( 
        select 
            ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res 
        from  ( 
            select 
                time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, 
                avg(num) as num 
            from  ( 
                select 
                    __time__ - __time__ % 60 as time, COUNT(*) as num 
                from log GROUP BY time order by time desc ) 
            GROUP by time order by time ASC )) , unnest(res) as t(t1) ) 
    where is_nan(src) = false order by unixtime desc limit 2

9

  • 针对上升点进行告警,并设置兜底策略
__log_signature__: 1814836459146662485 | 
select 
    sum(prob) as sumProb, max(src) as srcMax, max(up) as upMax 
from ( 
    select 
        unixtime, src, pred, up, lower, prob 
    from  ( 
        select 
            t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob 
        from  ( 
            select 
                ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res 
            from  ( 
                select 
                    time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num 
                from  ( 
                    select 
                        __time__ - __time__ % 60 as time, COUNT(*) as num 
                    from log GROUP BY time order by time desc ) 
                GROUP by time order by time ASC )) , unnest(res) as t(t1) ) 
        where is_nan(src) = false order by unixtime desc limit 2 )

10

具体的告警设置如下:
11


3.硬广时间

3.1 日志进阶

这里是日志服务的各种功能的演示 日志服务整体介绍,各种Demo
12

更多日志进阶内容可以参考:日志服务学习路径


3.2 联系我们

纠错或者帮助文档以及最佳实践贡献,请联系:悟冥
问题咨询请加钉钉群:

477c776b40abf1fdd879c8b73334c5a0b7276069_jpeg

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
26天前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
181 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
2月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
259 3
|
4月前
|
Kubernetes Ubuntu Windows
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
136 3
|
22天前
|
Oracle 关系型数据库 数据库
【赵渝强老师】Oracle的参数文件与告警日志文件
本文介绍了Oracle数据库的参数文件和告警日志文件。参数文件分为初始化参数文件(PFile)和服务器端参数文件(SPFile),在数据库启动时读取并分配资源。告警日志文件记录了数据库的重要活动、错误和警告信息,帮助诊断问题。文中还提供了相关视频讲解和示例代码。
|
2月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1661 14
|
2月前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
45 0
|
2月前
|
Python
log日志学习
【10月更文挑战第9天】 python处理log打印模块log的使用和介绍
35 0
|
2月前
|
数据可视化
Tensorboard可视化学习笔记(一):如何可视化通过网页查看log日志
关于如何使用TensorBoard进行数据可视化的教程,包括TensorBoard的安装、配置环境变量、将数据写入TensorBoard、启动TensorBoard以及如何通过网页查看日志文件。
231 0
|
2月前
|
存储 分布式计算 NoSQL
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
47 0
|
2月前
|
缓存 Linux 编译器
【C++】CentOS环境搭建-安装log4cplus日志组件包及报错解决方案
通过上述步骤,您应该能够在CentOS环境中成功安装并使用log4cplus日志组件。面对任何安装或使用过程中出现的问题,仔细检查错误信息,对照提供的解决方案进行调整,通常都能找到合适的解决之道。log4cplus的强大功能将为您的项目提供灵活、高效的日志管理方案,助力软件开发与维护。
62 0

相关产品

  • 日志服务