SLS机器学习最佳实战:日志聚类+异常告警

本文涉及的产品
对象存储 OSS,20GB 3个月
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
云备份 Cloud Backup,100GB 3个月
简介: 围绕日志,挖掘其中更大价值,一直是我们团队所关注。在原有日志实时查询基础上,今年SLS在DevOps领域完善了如下功能: - 上下文查询 - 实时Tail和智能聚类,以提高问题调查效率 - 提供多种时序数据的异常检测和预测函数,来做更智能的检查和预测 - 数据分析的结果可视化 - 强大的告...

0.文章系列链接



1.手中的锤子都有啥?

围绕日志,挖掘其中更大价值,一直是我们团队所关注。在原有日志实时查询基础上,今年SLS在DevOps领域完善了如下功能:

  • 上下文查询
  • 实时Tail和智能聚类,以提高问题调查效率
  • 提供多种时序数据的异常检测和预测函数,来做更智能的检查和预测
  • 数据分析的结果可视化
  • 强大的告警设置和通知,通过调用webhook进行关联行动
    1

今天我们重点介绍下,日志只能聚类和异常告警如何配合,更好的进行异常发现和告警

2.平台实验

2.1 实验数据

一份Sys Log的原始数据,,并且开启了日志聚类服务,具体的状态截图如下:
2

通过调整下面截图中红色框1的大小,可以改变图中红色框2的结果,但是对于每个最细粒度的pattern并不会改变,也就是说:子Pattern的结果是稳定且唯一的,我们可以通过子Pattern的Signature找到对应的原始日志条目。
3

2.2 生成子模式的时序信息

假设,我们对这个子Pattern要进行监控:

msg:vm-111932.tc su: pam_unix(*:session): session closed for user root
对应的 signature_id : __log_signature__: 1814836459146662485

我们得到了上述pattern对应的原始日志,可以看下具体的数量在时间轴上的直返图:
4

上图中,我们可以发现,这个模式的日志分布不是很均衡,其中还有一些是没有的,如果直接按照时间窗口统计数量,得到的时序图如下:

__log_signature__: 1814836459146662485 |  
select 
    date_trunc('minute', __time__) as time, 
    COUNT(*) as num 
from log GROUP BY time order by time ASC limit 10000

5

上述图中我们发现时间上并不是连续的。因此,我们需要对这条时序进行补点操作。

__log_signature__: 1814836459146662485 | 
select 
    time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, 
    avg(num) as num 
from  ( 
    select 
        __time__ - __time__ % 60 as time, 
        COUNT(*) as num 
    from log GROUP BY time order by time desc ) 
GROUP by time order by time ASC limit 10000

6

2.3 对时序进行异常检测

使用时序异常检测函数: ts_predicate_arma

__log_signature__: 1814836459146662485 | 
select 
    ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') 
from  ( 
    select 
        time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, 
        avg(num) as num 
    from  ( 
        select 
            __time__ - __time__ % 60 as time, 
            COUNT(*) as num 
        from log GROUP BY time order by time desc ) 
    GROUP by time order by time ASC ) limit 10000

7

2.4 告警该如何设置

  • 将机器学习函数的结果拆解开
__log_signature__: 1814836459146662485 | 
select 
    t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob 
from  ( 
    select 
        ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res 
    from  ( 
        select 
            time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, 
            avg(num) as num 
        from  ( 
            select 
                __time__ - __time__ % 60 as time, 
                COUNT(*) as num 
            from log GROUP BY time order by time desc ) 
        GROUP by time order by time ASC )) , unnest(res) as t(t1)

8

  • 针对最近两分钟的结果进行告警
__log_signature__: 1814836459146662485 | 
select 
    unixtime, src, pred, up, lower, prob 
from  ( 
    select 
        t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob 
    from  ( 
        select 
            ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res 
        from  ( 
            select 
                time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, 
                avg(num) as num 
            from  ( 
                select 
                    __time__ - __time__ % 60 as time, COUNT(*) as num 
                from log GROUP BY time order by time desc ) 
            GROUP by time order by time ASC )) , unnest(res) as t(t1) ) 
    where is_nan(src) = false order by unixtime desc limit 2

9

  • 针对上升点进行告警,并设置兜底策略
__log_signature__: 1814836459146662485 | 
select 
    sum(prob) as sumProb, max(src) as srcMax, max(up) as upMax 
from ( 
    select 
        unixtime, src, pred, up, lower, prob 
    from  ( 
        select 
            t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob 
        from  ( 
            select 
                ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res 
            from  ( 
                select 
                    time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num 
                from  ( 
                    select 
                        __time__ - __time__ % 60 as time, COUNT(*) as num 
                    from log GROUP BY time order by time desc ) 
                GROUP by time order by time ASC )) , unnest(res) as t(t1) ) 
        where is_nan(src) = false order by unixtime desc limit 2 )

10

具体的告警设置如下:
11


3.硬广时间

3.1 日志进阶

这里是日志服务的各种功能的演示 日志服务整体介绍,各种Demo
12

更多日志进阶内容可以参考:日志服务学习路径


3.2 联系我们

纠错或者帮助文档以及最佳实践贡献,请联系:悟冥
问题咨询请加钉钉群:

477c776b40abf1fdd879c8b73334c5a0b7276069_jpeg

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
29天前
|
Java Maven Spring
超实用的SpringAOP实战之日志记录
【11月更文挑战第11天】本文介绍了如何使用 Spring AOP 实现日志记录功能。首先概述了日志记录的重要性及 Spring AOP 的优势,然后详细讲解了搭建 Spring AOP 环境、定义日志切面、优化日志内容和格式的方法,最后通过测试验证日志记录功能的准确性和完整性。通过这些步骤,可以有效提升系统的可维护性和可追踪性。
|
1月前
|
Oracle 关系型数据库 数据库
【赵渝强老师】Oracle的参数文件与告警日志文件
本文介绍了Oracle数据库的参数文件和告警日志文件。参数文件分为初始化参数文件(PFile)和服务器端参数文件(SPFile),在数据库启动时读取并分配资源。告警日志文件记录了数据库的重要活动、错误和警告信息,帮助诊断问题。文中还提供了相关视频讲解和示例代码。
|
2月前
|
Java 程序员 应用服务中间件
「测试线排查的一些经验-中篇」&& 调试日志实战
「测试线排查的一些经验-中篇」&& 调试日志实战
25 1
「测试线排查的一些经验-中篇」&& 调试日志实战
|
4月前
|
SQL 运维 监控
Nest.js 实战 (十):使用 winston 打印和收集日志记录
这篇文章介绍了在Nest服务中如何使用Winston记录日志。文章首先强调了日志记录在后台服务中的重要性,接着提到Nest默认的内部日志记录器,并指出可以通过@nestjs/common包中的Logger类来全面控制日志系统的行为。文章还提到,为了在生产环境中实现更高级的日志功能,可以使用如Winston之类的Node.js日志包。接下来,文章介绍了如何在Nest服务中使用Winston记录日志,包括安装相关依赖、创建winston配置文件以及实现简单的日志记录示例。最后,文章指出更高级的自定义日志功能需要读者自己去探索。
148 2
Nest.js 实战 (十):使用 winston 打印和收集日志记录
|
4月前
|
XML Java Maven
Spring5入门到实战------16、Spring5新功能 --整合日志框架(Log4j2)
这篇文章是Spring5框架的入门到实战教程,介绍了Spring5的新功能——整合日志框架Log4j2,包括Spring5对日志框架的通用封装、如何在项目中引入Log4j2、编写Log4j2的XML配置文件,并通过测试类展示了如何使用Log4j2进行日志记录。
Spring5入门到实战------16、Spring5新功能 --整合日志框架(Log4j2)
|
3月前
|
SQL 安全 数据库
基于SQL Server事务日志的数据库恢复技术及实战代码详解
基于事务日志的数据库恢复技术是SQL Server中一个非常强大的功能,它能够帮助数据库管理员在数据丢失或损坏的情况下,有效地恢复数据。通过定期备份数据库和事务日志,并在需要时按照正确的步骤恢复,可以最大限度地减少数据丢失的风险。需要注意的是,恢复数据是一个需要谨慎操作的过程,建议在执行恢复操作之前,详细了解相关的操作步骤和注意事项,以确保数据的安全和完整。
154 0
|
4月前
|
数据库 Java 监控
Struts 2 日志管理化身神秘魔法师,洞察应用运行乾坤,演绎奇幻篇章!
【8月更文挑战第31天】在软件开发中,了解应用运行状况至关重要。日志管理作为 Struts 2 应用的关键组件,记录着每个动作和决策,如同监控摄像头,帮助我们迅速定位问题、分析性能和使用情况,为优化提供依据。Struts 2 支持多种日志框架(如 Log4j、Logback),便于配置日志级别、格式和输出位置。通过在 Action 类中添加日志记录,我们能在开发过程中获取详细信息,及时发现并解决问题。合理配置日志不仅有助于调试,还能分析用户行为,提升应用性能和稳定性。
60 0
|
4月前
|
SQL 安全 测试技术
【数据守护者必备】SQL数据备份与恢复策略全解析:从全量到日志备份,手把手教你确保企业信息万无一失的实战技巧!
【8月更文挑战第31天】数据库是企业核心业务数据的基石,为防止硬件故障、软件错误或人为失误导致的数据丢失,制定可靠的备份与恢复策略至关重要。本文通过一个在线购物平台的案例,详细介绍了使用 SQL Server 进行全量备份、差异备份及事务日志备份的方法,并演示了如何利用 SQL Server Agent 实现自动化备份任务。此外,还提供了数据恢复的具体步骤和测试建议,确保数据安全与业务连续性。
198 0
|
20天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
63 4
|
16天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
35 1

相关产品

  • 日志服务