基于阿里云HBase产品的游戏大数据实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 本文介绍了厦门点触科技股份有限公司使用阿里云HBase建立游戏大数据平台的实践。

大数据架构

我们团队大数据方案主要参考阿里巴巴大数据方案并结合自身特点量身定做,像阿里巴巴大数据体系架构一样也分四层,只是内容有所简化和差异。其实多数大数据架构方案都略同,只是在细节上有所差异。
_

  1. 数据采集层:数据来源有两种——客户端埋点日志和服务端请求处理日志。最终这些日志都是以日志聚合的形式,经过消息队列中间件缓存,最终汇总到数据湖。
  2. 数据计算层:市面上有多种离线和实时计算引擎,从技术生态成熟度来说Spark相对完善,我们选择了Spark生态技术栈。数据加工链路与阿里巴巴数据计算层类似分为操作数据层(Operational Data Store, ODS)、明细数据层(Data Warehouse Detail, DWD)、汇总数据层(Data Warehouse Summary, DWS)和应用数据层(Application Data Store, ADS),元数据管理和数据质量处理还有待完善。
  3. 数据服务层:数据服务层对底层数据存储透明,面向数据应用层开放海量数据,并对外提供统一的数据服务平台,通过接口提供数据查询服务和实时数据推送服务。
  4. 数据应用层:以应用的形式提供数据可视化,支持各种应用场景的数据分析,为运营、发行、策划提供宏观决策支撑。

基于HBase大数据解决方案

核心需求

  1. 支持高性能离线计算和实时计算;
  2. 管理数据作业调度;
  3. 支持弹性伸缩计算(节省成本);
  4. 支持冷热存储(节省成本);
  5. 满足数据湖场景,支持高吞吐海量存储结构化和非结构化数据;
  6. 支持即席查询。

技术选型

2018年10月阿里云正在研发HBase产品,我们团队当时正在准备做大数据方案,阿里云HBase技术团队找我们探讨解决方案合作,经过讨论和分析我们认为HBase产品基本能满足游戏大数据业务。HBase产品具有以下优势:托管基础设施运维;将Hadoop核心功能精简为Spark和HBase;使计算与存储分离;高吞吐、高性能、高容量。

HBase产品演化

2018年10月,HBase产品刚上线时主要提供HBase、Phoenix和Spark等核心功能,我们团队向阿里云HBase团队反馈了一些业务场景的需求,随后HBase产品不断新增辅助功能:完善作业提交服务LivyServer,数据工作台支持可视化工作流编排,基于数据湖非结构化数据存储分析的需求提供访问HDFS,提供Zeppelin交互式查询便于开发调试。至2019年4月,HBase产品已经趋于完善,只有弹性伸缩计算这个需求还没有支持,而此时我们团队的大数据方案也基本伴随HBase产品的成熟逐渐落地。

日志聚合

日志采集工具

日志聚合其实是在微服务体系下衍生的产物,也是大数据处理的第一个环节。我们选用Flume和Kafka作为日志采集工具建立日志数据流,虽然这是个经典方案但没看到多少资料解释为什么要这样做,这里根据我们的业务场景补充说明,日志传输需要解决几个问题:解决生产者和消费者速率不匹配的问题,满足高可用、高吞吐、低延时,在数据仓库维护不可用时能缓存数据,支持在线水平扩展和维护,满足多样化数据过滤转换需求和数据扇入扇出。在各种日志收集工具中Flume的灵活性较强,可以满足各种场景的需求,而Kafka具有高可用、高吞吐、低延时的特性,这两种产品组合基本满足了大部分日志传输需求。

日志数据流

_

我们将游戏日志分为核心日志和非核心日志分开处理,核心日志用于计算核心业务指标,非核心日志用于自定义数据分析,分开处理是为了避免系统互相影响。核心日志是结构化数据,因此我们规范了核心日志生产者数据接口,核心日志投递主要通过Phoenix写入HBase,需要实时计算的日志则通过Spark Streaming处理后再写入HBase。非核心日志提供灵活的自定义日志方式,因此数据处理量要比核心日志大的多,为减轻服务端压力我们采用推拉结合的方式,先将日志以文件形式传到NAS,再由Flume从NAS中拉文件再投递到HDFS,如果需要实时计算则传到Kafka经过Spark Streaming再投递到HBase,其中还有部分日志用于追踪系统异常则需要传到Elasticsearch,通过Kibana查询日志。

数据湖

数据湖是一种大型集中式存储库和处理引擎,允许以任意规模存储所有结构化和非结构化数据,拥有强大的信息处理能力和处理几乎无限的并发任务或工作的能力,运行不同类型的分析——从控制面板和可视化到大数据处理、实时分析和机器学习,以指导业务做出更好的决策。与传统数据仓库的重要区别是数据湖可以处理非结构化数据,为后期的机器学习和预测分析提供帮助,而且日志可以更灵活的形式存储,提高数据创新使用效率。基于这种需求,我们需要使用HDFS存储非结构化数据,HBase正好产品规划也包含了这块功能,存储集群HDFS和HBase结合计算集群Spark基本满足了数据湖的需求。

参考资料

  • 《大数据之路 阿里巴巴大数据实践》,阿里巴巴数据技术及产品部著,电子工业出版社
相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
26天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
104 19
|
22天前
|
存储 人工智能 分布式计算
大数据& AI 产品月刊【2024年10月】
大数据& AI 产品技术月刊【2024年10月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
28天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
zdl
|
15天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
51 0
|
2月前
|
人工智能 分布式计算 大数据
大数据&AI产品月刊【2024年9月】
大数据& AI 产品技术月刊【2024年9月】,涵盖本月技术速递、2024云栖大会实录、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
3月前
|
人工智能 分布式计算 DataWorks
连续四年!阿里云领跑中国公有云大数据平台
近日,国际数据公司(IDC)发布《中国大数据平台市场份额,2023:数智融合时代的真正到来》报告——2023年中国大数据平台公有云服务市场规模达72.2亿元人民币,其中阿里巴巴市场份额保持领先,占比达40.2%,连续四年排名第一。
225 12
|
2月前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
48 0
|
3月前
|
SQL 人工智能 大数据
首个大数据批流融合国家标准正式发布,阿里云为牵头起草单位!
近日,国家市场监督管理总局、国家标准化管理委员会正式发布大数据领域首个批流融合国家标准 GB/T 44216-2024《信息技术 大数据 批流融合计算技术要求》,该标准由阿里云牵头起草,并将于2025年2月1日起正式实施。
|
2月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
128 0
|
2月前
|
SQL 存储 监控
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
54 0