dubbo -负载均衡策略

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 开篇这篇文章的目的是为了讲解清楚dubbo负载均衡的底层实现机制,根据浏览的网上资料来看似乎随着dubbo的版本更新有一些变化,不过大概分类就是那么多,感兴趣的可以自行阅读。负载均衡类依赖图RoundRobinLoadBalance说明RoundRobinLoadBalance基于权重的轮询如果所有provider的权重都是一致的,那么就变成轮询的状态,invokers.get(currentSequence % length)。

开篇

这篇文章的目的是为了讲解清楚dubbo负载均衡的底层实现机制,根据浏览的网上资料来看似乎随着dubbo的版本更新有一些变化,不过大概分类就是那么多,感兴趣的可以自行阅读。


负载均衡类依赖图

image


RoundRobinLoadBalance

说明

  • RoundRobinLoadBalance基于权重的轮询
  • 如果所有provider的权重都是一致的,那么就变成轮询的状态,invokers.get(currentSequence % length)。
  • 如果所有provider的权重并不完全一致,那么就计算权重和并通过currentSequence % weightSum生成随机数。通过双层for循环直至mod值为0后返回。内层for负责每次都把所有的provider的权重减一,通过外层for循环控制,直到mod为0返回对应的provider。
  • 假设有服务器集合(服务器名:其权重值):A(S0:1, S1:5, S2:5, S3:1, S4:3),权重值不同,使用基于权重值的轮询算法。计算权重值总和(15),初始化一个原子性整数的序列并构建服务器与其权重值的映射集合,只要遍历一次映射集合。若当前所在的序列值为20,与15取模得5,开始遍历映射集合, mod = 5。
    第一轮过后,服务器集合改变为A(S0:0, S1:4, S2:4, S3:0, S4:2),mod=0,

第二轮过后,S1符合mod=0且S1的value=4>0的条件,所以会选择 S1 服务器。

public class RoundRobinLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "roundrobin";

    private final ConcurrentMap<String, AtomicPositiveInteger> sequences = new ConcurrentHashMap<String, AtomicPositiveInteger>();

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        int length = invokers.size(); // Number of invokers
        int maxWeight = 0; // The maximum weight
        int minWeight = Integer.MAX_VALUE; // The minimum weight
        final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>();
        int weightSum = 0;
        // 遍历invoker,记录权重最大值和最小值;如果权重值大于0,将invoker及其权重值包装类放入map集合,并累加权重值。
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            maxWeight = Math.max(maxWeight, weight); // Choose the maximum weight
            minWeight = Math.min(minWeight, weight); // Choose the minimum weight
            if (weight > 0) {
                invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight));
                weightSum += weight;
            }
        }

        // 每个key维持一个sequence对象
        AtomicPositiveInteger sequence = sequences.get(key);
        if (sequence == null) {
            sequences.putIfAbsent(key, new AtomicPositiveInteger());
            sequence = sequences.get(key);
        }

        // 基于每个sequence自增然后求余然后进行选择
        int currentSequence = sequence.getAndIncrement();
        if (maxWeight > 0 && minWeight < maxWeight) {
            int mod = currentSequence % weightSum;
            for (int i = 0; i < maxWeight; i++) {
                for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) {
                    final Invoker<T> k = each.getKey();
                    final IntegerWrapper v = each.getValue();
                    if (mod == 0 && v.getValue() > 0) {
                        return k;
                    }
                    if (v.getValue() > 0) {
                        v.decrement();
                        mod--;
                    }
                }
            }
        }
        // 权重一致就蜕化为轮询操作
        return invokers.get(currentSequence % length);
    }
}


RandomLoadBalance

  • RandomLoadBalance的实现逻辑分为权重相同和权重不同的情况。
  • 权重相同的情况下通过random.nextInt(provider的个数)随机选取一个。
  • 权重不同的情况下通过累加权重得到totalWeight,然后random.nextInt(totalWeight)获取随机数offset,基于offset开始遍历所有provider的权重找到第一个让offset的值为0的provider。
  • 这种策略大概率能够让权重大的provider获取更多机会同时兼顾了权重小的接口。
public class RandomLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "random";

    private final Random random = new Random();

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size(); // Number of invokers
        int totalWeight = 0; // The sum of weights
        boolean sameWeight = true; // Every invoker has the same weight?
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            totalWeight += weight; // Sum
            if (sameWeight && i > 0
                    && weight != getWeight(invokers.get(i - 1), invocation)) {
                sameWeight = false;
            }
        }
        if (totalWeight > 0 && !sameWeight) {
            // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
            int offset = random.nextInt(totalWeight);
            // Return a invoker based on the random value.
            for (int i = 0; i < length; i++) {
                offset -= getWeight(invokers.get(i), invocation);
                if (offset < 0) {
                    return invokers.get(i);
                }
            }
        }
        // If all invokers have the same weight value or totalWeight=0, return evenly.
        return invokers.get(random.nextInt(length));
    }
}


LeastActiveLoadBalance

  • LeastActiveLoadBalance就是选择活跃数最少的provider,活跃数指代的就是调用次数-响应次数,活跃数越少说明响应越快。
  • LeastActiveLoadBalance的配置某种意义上来说选择性能最优的机器来提供更快的服务。
  • LeastActiveLoadBalance的选择leastActive的逻辑很简单,每次重启或者遇到更小的Active数的时候重新开始计数,然后基于重新计数的基础之上统计相同的leastActive进行选择。
  • 如果leastActive只有一个就直接返回,如果有多个那么按照权重方式进行返回,权重的方式就是计算总权重然后基于总权重生成随机数,通过遍历leastActive的provider找除第一个让随机数为0的provider。
public class LeastActiveLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "leastactive";

    private final Random random = new Random();

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size(); // Number of invokers
        int leastActive = -1; // The least active value of all invokers
        int leastCount = 0; // The number of invokers having the same least active value (leastActive)
        int[] leastIndexs = new int[length]; // The index of invokers having the same least active value (leastActive)
        int totalWeight = 0; // The sum of weights
        int firstWeight = 0; // Initial value, used for comparision
        boolean sameWeight = true; // Every invoker has the same weight value?
        for (int i = 0; i < length; i++) {
            Invoker<T> invoker = invokers.get(i);
            int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // Active number
            int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // Weight
            if (leastActive == -1 || active < leastActive) { // Restart, when find a invoker having smaller least active value.
                leastActive = active; // Record the current least active value
                leastCount = 1; // Reset leastCount, count again based on current leastCount
                leastIndexs[0] = i; // Reset
                totalWeight = weight; // Reset
                firstWeight = weight; // Record the weight the first invoker
                sameWeight = true; // Reset, every invoker has the same weight value?
            } else if (active == leastActive) { // If current invoker's active value equals with leaseActive, then accumulating.
                leastIndexs[leastCount++] = i; // Record index number of this invoker
                totalWeight += weight; // Add this invoker's weight to totalWeight.
                // If every invoker has the same weight?
                if (sameWeight && i > 0
                        && weight != firstWeight) {
                    sameWeight = false;
                }
            }
        }
        // assert(leastCount > 0)
        if (leastCount == 1) {
            // If we got exactly one invoker having the least active value, return this invoker directly.
            return invokers.get(leastIndexs[0]);
        }
        if (!sameWeight && totalWeight > 0) {
            // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
            int offsetWeight = random.nextInt(totalWeight);
            // Return a invoker based on the random value.
            for (int i = 0; i < leastCount; i++) {
                int leastIndex = leastIndexs[i];
                offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
                if (offsetWeight <= 0)
                    return invokers.get(leastIndex);
            }
        }
        return invokers.get(leastIndexs[random.nextInt(leastCount)]);
    }
}

最小活跃数统计

  • 在ActiveLimitFilter的拦截器当中,每次调用前RpcStatus.beginCount()增加活跃数,在返回结果后RpcStatus.endCount()减少活跃数。
  • 如果系统响应慢,那么对应的活跃数就会多,活跃数说明系统比较慢,那么就会少分配请求保持系统响应。
public class ActiveLimitFilter implements Filter {

    public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
        URL url = invoker.getUrl();
        String methodName = invocation.getMethodName();
        int max = invoker.getUrl().getMethodParameter(methodName, Constants.ACTIVES_KEY, 0);
        RpcStatus count = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName());
        // 省略相关代码
        try {
            long begin = System.currentTimeMillis();
            // 增加计数也就是增加活跃数
            RpcStatus.beginCount(url, methodName);
            try {
                Result result = invoker.invoke(invocation);
                // 减少计数也就是减少活跃数
                RpcStatus.endCount(url, methodName, System.currentTimeMillis() - begin, true);
                return result;
            } catch (RuntimeException t) {
                RpcStatus.endCount(url, methodName, System.currentTimeMillis() - begin, false);
                throw t;
            }
        } finally {
            if (max > 0) {
                synchronized (count) {
                    count.notify();
                }
            }
        }
    }
}




public class RpcStatus {

    public static void beginCount(URL url, String methodName) {
        beginCount(getStatus(url));
        beginCount(getStatus(url, methodName));
    }

    private static void beginCount(RpcStatus status) {
        status.active.incrementAndGet();
    }

    public static void endCount(URL url, String methodName, long elapsed, boolean succeeded) {
        endCount(getStatus(url), elapsed, succeeded);
        endCount(getStatus(url, methodName), elapsed, succeeded);
    }

    private static void endCount(RpcStatus status, long elapsed, boolean succeeded) {
        status.active.decrementAndGet();
        status.total.incrementAndGet();
        status.totalElapsed.addAndGet(elapsed);
        if (status.maxElapsed.get() < elapsed) {
            status.maxElapsed.set(elapsed);
        }
        if (succeeded) {
            if (status.succeededMaxElapsed.get() < elapsed) {
                status.succeededMaxElapsed.set(elapsed);
            }
        } else {
            status.failed.incrementAndGet();
            status.failedElapsed.addAndGet(elapsed);
            if (status.failedMaxElapsed.get() < elapsed) {
                status.failedMaxElapsed.set(elapsed);
            }
        }
    }
}


ConsistentHashLoadBalance

说明:

  • 一致性hash算法核心的关键点有两个:一致性hashMap的构建,一致性hashMap的select操作。
  • 构建过程:一致性hash的虚拟节点采用了TreeMap对象,针对每个provider根据url的address字段虚拟节点个数/4的偏移量生成128的digest字段,针对128位的digest字段(16个字节)按照每4个字节进行进行计算生成4个虚拟节点放到TreeMap当中。假设有160个虚拟节点,160/4=40个待处理虚拟节点,针对40个待处理虚拟节点中的每个节点生成16个字节的digest,16个字节中digest分为4份进行保存,最终依然是160个虚拟节点
  • 查询过程:查询过程根据指定参数进行md5+hash()计算hash值,找到比hash值小的treeMap然后选择treeMap的根节点选择provider,如果找不到比hash小的treeMap就选择treeMap的最小根节点。
public class ConsistentHashLoadBalance extends AbstractLoadBalance {

    private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors = new ConcurrentHashMap<String, ConsistentHashSelector<?>>();

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        int identityHashCode = System.identityHashCode(invokers);
        ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
        if (selector == null || selector.identityHashCode != identityHashCode) {
            selectors.put(key, new ConsistentHashSelector<T>(invokers, invocation.getMethodName(), identityHashCode));
            selector = (ConsistentHashSelector<T>) selectors.get(key);
        }
        return selector.select(invocation);
    }

    private static final class ConsistentHashSelector<T> {

        private final TreeMap<Long, Invoker<T>> virtualInvokers;

        private final int replicaNumber;

        private final int identityHashCode;

        private final int[] argumentIndex;

        ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
            this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
            this.identityHashCode = identityHashCode;
            URL url = invokers.get(0).getUrl();
            this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
            String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
            argumentIndex = new int[index.length];
            for (int i = 0; i < index.length; i++) {
                argumentIndex[i] = Integer.parseInt(index[i]);
            }
            for (Invoker<T> invoker : invokers) {
                String address = invoker.getUrl().getAddress();
                for (int i = 0; i < replicaNumber / 4; i++) {
                    byte[] digest = md5(address + i);
                    for (int h = 0; h < 4; h++) {
                        long m = hash(digest, h);
                        virtualInvokers.put(m, invoker);
                    }
                }
            }
        }

        public Invoker<T> select(Invocation invocation) {
            String key = toKey(invocation.getArguments());
            byte[] digest = md5(key);
            return selectForKey(hash(digest, 0));
        }

        private String toKey(Object[] args) {
            StringBuilder buf = new StringBuilder();
            for (int i : argumentIndex) {
                if (i >= 0 && i < args.length) {
                    buf.append(args[i]);
                }
            }
            return buf.toString();
        }

        private Invoker<T> selectForKey(long hash) {
            Invoker<T> invoker;
            Long key = hash;
            if (!virtualInvokers.containsKey(key)) {
                SortedMap<Long, Invoker<T>> tailMap = virtualInvokers.tailMap(key);
                if (tailMap.isEmpty()) {
                    key = virtualInvokers.firstKey();
                } else {
                    key = tailMap.firstKey();
                }
            }
            invoker = virtualInvokers.get(key);
            return invoker;
        }

        private long hash(byte[] digest, int number) {
            return (((long) (digest[3 + number * 4] & 0xFF) << 24)
                    | ((long) (digest[2 + number * 4] & 0xFF) << 16)
                    | ((long) (digest[1 + number * 4] & 0xFF) << 8)
                    | (digest[number * 4] & 0xFF))
                    & 0xFFFFFFFFL;
        }

        private byte[] md5(String value) {
            MessageDigest md5;
            try {
                md5 = MessageDigest.getInstance("MD5");
            } catch (NoSuchAlgorithmException e) {
                throw new IllegalStateException(e.getMessage(), e);
            }
            md5.reset();
            byte[] bytes;
            try {
                bytes = value.getBytes("UTF-8");
            } catch (UnsupportedEncodingException e) {
                throw new IllegalStateException(e.getMessage(), e);
            }
            md5.update(bytes);
            return md5.digest();
        }

    }

}
相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
相关文章
|
1月前
|
负载均衡 Java Nacos
常见的Ribbon/Spring LoadBalancer的负载均衡策略
自SpringCloud 2020版起,Ribbon被弃用,转而使用Spring Cloud LoadBalancer。Ribbon支持轮询、随机、加权响应时间和重试等负载均衡策略;而Spring Cloud LoadBalancer则提供轮询、随机及Nacos负载均衡策略,基于Reactor实现,更高效灵活。
80 0
|
3月前
|
负载均衡 应用服务中间件 nginx
Nginx的6大负载均衡策略及权重轮询手写配置
【10月更文挑战第9天】 Nginx是一款高性能的HTTP服务器和反向代理服务器,它在处理大量并发请求时表现出色。Nginx的负载均衡功能可以将请求分发到多个服务器,提高网站的吞吐量和可靠性。以下是Nginx支持的6大负载均衡策略:
317 7
|
3月前
|
负载均衡 算法 Java
腾讯面试:说说6大Nginx负载均衡?手写一下权重轮询策略?
尼恩,一位资深架构师,分享了关于负载均衡及其策略的深入解析,特别是基于权重的负载均衡策略。文章不仅介绍了Nginx的五大负载均衡策略,如轮询、加权轮询、IP哈希、最少连接数等,还提供了手写加权轮询算法的Java实现示例。通过这些内容,尼恩帮助读者系统化理解负载均衡技术,提升面试竞争力,实现技术上的“肌肉展示”。此外,他还提供了丰富的技术资料和面试指导,助力求职者在大厂面试中脱颖而出。
腾讯面试:说说6大Nginx负载均衡?手写一下权重轮询策略?
|
4月前
|
负载均衡 Java 对象存储
负载均衡策略:Spring Cloud与Netflix OSS的最佳实践
负载均衡策略:Spring Cloud与Netflix OSS的最佳实践
62 2
|
5月前
|
负载均衡 应用服务中间件 Linux
在Linux中,Nginx如何实现负载均衡分发策略?
在Linux中,Nginx如何实现负载均衡分发策略?
|
5月前
|
缓存 负载均衡 算法
在Linux中, LVS负载均衡有哪些策略?
在Linux中, LVS负载均衡有哪些策略?
|
5月前
|
负载均衡 Dubbo 算法
Dubbo服务负载均衡原理
该文章主要介绍了Dubbo服务负载均衡的原理,包括Dubbo中负载均衡的实现位置、为什么需要负载均衡机制、Dubbo支持的负载均衡算法以及随机负载均衡策略的源码分析。
|
6月前
|
消息中间件 负载均衡 算法
【RocketMQ系列十二】RocketMQ集群核心概念之主从复制&生产者负载均衡策略&消费者负载均衡策略
【RocketMQ系列十二】RocketMQ集群核心概念之主从复制&生产者负载均衡策略&消费者负载均衡策略
172 2
|
8月前
|
域名解析 缓存 运维
【域名解析DNS专栏】DNS解析策略:如何实现负载均衡与故障转移
【5月更文挑战第23天】DNS在互联网中扮演关键角色,将域名转换为IP地址。本文探讨DNS的负载均衡和故障转移技术,以增强服务可用性和性能。负载均衡包括轮询(简单分配流量)和加权轮询(按服务器处理能力分配)。故障转移通过主备策略和TTL值实现快速切换,确保服务连续性。实践案例展示了在电商网站如何应用这些策略。DNS策略优化可提升网站速度和稳定性,借助云服务和智能工具,DNS管理更加高效。
730 1
【域名解析DNS专栏】DNS解析策略:如何实现负载均衡与故障转移
|
8月前
|
负载均衡
【SpringCloud】Ribbon负载均衡原理、负载均衡策略、饥饿加载
【SpringCloud】Ribbon负载均衡原理、负载均衡策略、饥饿加载
95 0