建立索引的原则 - 以innodb为例

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:

一、写在前面

        随着开发、测试任务进入尾声,大家都在整理一些项目发布前的一些准备工作,其中一个重要的工作就是为之前写的一些sql语句建立索引,这高并发、高访问量的环境下是非常有必要的,建立一个好的索引能够极大地提高sql语句的查询效率,那么问题来了,到底什么是索引,怎样才能建立一个好的索引呢?本文以mysql Innodb存储引擎为例,结合实际的项目来看一下,如何建立一个好的而索引。

二、索引定义

        MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。提取句子主干,就可以得到索引的本质:索引是数据结构。
        我们知道,数据库查询是数据库的最主要功能之一,例如下面的SQL语句:SELECT * FROM test_table WHERE id = 99 ;可以从表test_table中获得id为99的数据记录。
        我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找(linear search),遍历test_table然后逐行匹配id的值是否是99,这种复杂度为O(n)的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找(binary search)、二叉树查找(binary tree search)等。如果稍微分析一下会发现,每种查找算法都只能应用于特定的数据结构之上,例如二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织),所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
        举上面的例子主要是为了简单说明地说明索引的作用,包括mysql Innodb在内的大部分数据库系统及文件系统并没有选择二叉树结构作为索引,而是采用了B-Tree或其变种B+Tree作为索引结构,这种索引结构可以最大限度地减少查找过程中磁盘I/O的存取次数,关于什么是B-Tree或B+Tree以及选择它们做数据库索引结构的原因,大家可以自行去学习。下面我们首先介绍下mysql Innodb引擎的两种B+Tree索引。

三、Mysql Innodb B+Tree索引

  1. 一种是主键索引,主键索引即聚集索引(Cluster Index),它不仅有主键,而且有主键所属的全部数据,所以在Innodb中,主键索引即数据;
  2. 一种是列值为Key,主键位置为Value即 (列值, 主键位置) 的非主键索引(Secondary Index) 1 2         Innodb属于索引组织表,所有的数据全部挂在主键叶子节点下。所以如果不能保证主键的插入顺序,那么会发生大量的主键节点分裂,产生大量的I/O操作。另外Innodb规定单个索引字段的长度不得超过768字节,否则截断超出长度不放入索引。         Innodb的非主键索引全部都指向主键索引,查找非主键索引无法获得整行数据,需要通过叶子节点的指针查到其主键索引的位置才能获得整行数据,所以主键索引必须设计得尽可能小,否则非主键索引将会非常的大。

四、建立索引的原则

        下面我们看一下建立一个好的索引需要遵循的原则,并结合具体的例子来做说明;
1. 最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2. =和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式。
3. 尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录
4. 索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ‘2015-08-14’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(‘2015-08-14’)。
5. 尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
6. 在order by或者group by子句中,如果想通过索引来进行排序,所建索引列的顺序必须与order by或者group by子句的顺序一致,并且所有列的排序方向(倒序或者正序)都一样;如果查询关联多张表,则只有order by子句引用的字段全部来自第一张表时,才能利用索引来排序;order by或者group by语句与查询型语句的限制是一样的:需要满足索引的最左前缀原则;否则mysql就要执行排序操作,无法利用索引来排序;(有一种情况order by或者group by子句可以不满足最左前缀原则,就是其前导为常量的时候,如果where或者join对这些列指定了常量,就可以弥补索引的不足)。

五、举例

        语句1:
3
        语句2:
4
        对于这两条语句,如果单独进行考虑的话,大家可能会建立两个索引;
针对语句1建立(status,netting_batch_no,debtor_agent_member_id);
针对语句2建立(netting_batch_no,debtor_agent_member_id,transaction_currency);
如果综合考虑来看的话,其实一个索引就够了,即(netting_batch_no,debtor_agent_member_id),这里没必要将status或者transaction_currency字段放到索引中,因为这两个字段的区分度太差;
根据建立索引的原则2,语句1是可以走到这个索引的;
根据建立索引的原则1,语句2也是可以走到这个索引的;
索引不是越多越好,建立过多的索引会增加数据库内存或者磁盘的消耗,并且会影响到得插入、删除等操作的性能,索引在建立索引时要遵循索引建立的原则,通盘考虑;

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
8月前
|
存储 算法 关系型数据库
深入理解InnoDB索引数据结构和算法
1. **索引定义**:索引是提升查询速度的有序数据结构,帮助数据库系统快速找到数据。 2. **索引类型**:包括普通索引、唯一索引、主键索引、空间索引和全文索引,每种有特定应用场景。 3. **数据结构**:InnoDB使用B+树作为索引结构,确保所有节点按顺序排列,降低查询时的磁盘I/O。 4. **B+树特性**:所有数据都在叶子节点,非叶子节点仅存储索引,提供高效范围查询。 5. **索引优势**:通过减少查找数据所需的磁盘I/O次数,显著提高查询性能。 **总结:**InnoDB索引通过B+树结构,优化了数据访问,使得查询速度快,尤其适合大数据量的场景。
447 0
深入理解InnoDB索引数据结构和算法
|
8月前
|
存储 关系型数据库 MySQL
索引大战:探秘InnoDB数据库中B树和Hash索引的优劣
索引大战:探秘InnoDB数据库中B树和Hash索引的优劣
74 0
|
8月前
|
存储 SQL 关系型数据库
系统设计场景题—MySQL使用InnoDB,通过二级索引查第K大的数,时间复杂度是多少?
系统设计场景题—MySQL使用InnoDB,通过二级索引查第K大的数,时间复杂度是多少?
92 1
系统设计场景题—MySQL使用InnoDB,通过二级索引查第K大的数,时间复杂度是多少?
|
8月前
|
存储 算法 关系型数据库
InnoDb行格式、数据页结构、索引底层原理和如何建立索引
InnoDb行格式、数据页结构、索引底层原理和如何建立索引
127 0
|
27天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
116 7
|
2月前
|
存储 算法 关系型数据库
InnoDB与MyISAM实现索引方式的区别
InnoDB和MyISAM均采用B+树索引,但在实现上有所不同。InnoDB的主键索引在叶子节点存储完整数据记录,辅助索引则存储主键值;而MyISAM的主键索引与数据文件分离,仅存数据地址,且主辅索引无区别,支持非唯一主索引。
49 1
|
7月前
|
存储 关系型数据库 MySQL
【MySQL技术内幕】5.1-InnoDB存储引擎索引概述
【MySQL技术内幕】5.1-InnoDB存储引擎索引概述
67 0
|
8月前
|
SQL 存储 关系型数据库
【深入浅出MySQL】「底层原理」InnoDB索引原理全程实操指南,带你从入门到精通
【深入浅出MySQL】「底层原理」InnoDB索引原理全程实操指南,带你从入门到精通
242 1
|
8月前
|
存储 关系型数据库 MySQL
InnoDB中的索引方案
InnoDB中的索引方案
71 0
|
8月前
|
存储 关系型数据库 MySQL
mysql 索引的代价(InnoDB)
mysql 索引的代价(InnoDB)

相关实验场景

更多