舆情中的热词分析,没你想的那么简单

简介: 阿里云公众趋势分析产品通过云服务的方式,将阿里巴巴成熟的舆情分析技术共享给广大开发者。热词分析是公众趋势分析最近刚刚上线的功能,用户反馈效果还不错。那么这个听上去很简单的功能,背后有哪些不为人知的细节呢?

背景

阿里云公众趋势分析产品通过云服务的方式,将阿里巴巴成熟的舆情分析技术共享给广大开发者。热词分析是公众趋势分析最近刚刚上线的功能,用户反馈效果还不错。这个功能听起来很简单,不就是对数据源进行分词,然后再统计一下热度么?No!它可没那么简单。

分词和实体识别

良好的分词是热词分析的基础。对于绝大部分分词工具来说,最大的挑战在于识别从未见过的网络热门词、各种奇葩的品牌、产品词等,举个例子,“安利的空气净化器跟霍尼韦尔还有米家比怎么样”这个句子,我们随意在网上找到了某款开源的分词工具,分词的结果如下:

安利/的/空气/净化器/跟/霍尼/韦尔/还有/米/家/比/怎么样

分词工具能识别一般的词语,但是对于品牌词、产品词等专有的实体词,在没有知识库的辅助下很难识别。而阿里在互联网尤其是电商领域耕耘多年,积累了丰富的词库,并始终在不断更新,譬如上述句子,我们可以将其断成如下形式:

安利:brd/的/空气净化器:prd/跟/霍尼韦尔:brd/还有/米家:brd/比/怎么样

不仅能正确地分词,而且还能识别出其中的实体,如霍尼韦尔和米家是品牌词(brd),空气净化器是产品词(prd)。目前,公众趋势分析背后有百万级的人名、品牌、地址、组织机构名、商品、品牌词库等做支撑。

3f21a0affb1d0e57f73b858f68840c6f54547e77

关键词提取

海量的文章,带来了巨大数量的词,对于每篇文章,真正需要被关注的只是少数关键词,那么如何在一篇长文本中挑出关键词呢?热词分析使用TextRank算法为文本生成关键词。

TextRank的算法思想来源于PageRank,旨在通过文本中句子、词之间的相互投票,为句子、词进行权重的排序。PageRank假设一个网页的入链越多,则其权重越高。随机地为每个网页分配一个初始权重,在每一轮投票中,每个网页将其权重均匀地分配给其出链,收敛后(平稳马尔科夫过程)每个网页得到的权重值反映了其重要性,每轮投票的数学表述为:

8835cdaba445e628d8d9923c4de65f20e8a32b0c

其中d为阻尼系数,(1-d)/N表示每次页面转移时有一定的概率会从全网随机选择url,这样可以避免没有外链的悬挂网页让所有权重收敛到0。

PageRank通过页面之间的链接关系建立投票机制,TextRank以此为启发,通过词之间的邻近关系建立词权重投票机制,即假如两个词出现在同一个窗口中,则它们之间产生一次权重投票,这样可以通过PageRank的求解方法,计算每个词在文本中的权重。得到权重的排序之后,就可以挑选topN词作为关键词了。

18184d5151fe508b3ada0a29db9571b1b09ffa75

词关联计算

体验过热词分析功能的读者会发现,对于每个热词,我们提供了与其强关联的词,那么,这些关联关系如何计算呢?

48287e89e4a53e5456cb8946ef55426249b772b3

词关联使用点互信息PMI(pointwise mutual information)来表示,用信息论的语言来表述,点互信息衡量的是“给定一个随机变量后,另一个随机变量不确定性的减少程度”。假设有两个词x和y,则x和y之间的点互信息由下述公式表示:

dc8a7becce907ad4d4a4fa5baeaa7a78e0e02cc9

其中p(x,y)表示x和y同时出现的概率,p(x)和p(y)分别表示x和y单独出现的概率。简单粗暴地理解,就是说相对于单独出现,某两个词更喜欢一起出现,则它们之间的关联程度越高。

热度计算

好了,现在我们已经能得到每篇文章的关键词,而且也能计算跟这些关键词有关联关系的词了,那么词的热度如何衡量呢?词的热度计算不能仅仅统计这个词在所有文章中的出现次数,因为每篇文章的热门程度不一样,汪峰上了头条时的报道,对于热度的计算不能跟一般的小道消息同日而语。热词分析在计算热度时,会用文章的热度对词进行加权,而文章的热度会综合考虑以下因素:

  • 文章的转发量
  • 浏览量
  • 评论量
  • 文章发布的时间,如果发布时间越长,则热度衰减地越高

具体的计算公式就不在这公开了,那是我们经过无数次的调试之后的结果,有兴趣的读者也可以了解一下这篇文章

后记

小小的热词分析,背后也有这么多的技巧和门槛,然而这一切,都是为了利用阿里的大数据技术积累,尽量为客户呈现最精准的舆情分析,产品刚刚上线,优化的路还很长,欢迎大家试用。

目录
相关文章
|
5天前
|
文字识别 自然语言处理 算法
从多模态到精准洞察:深度解析多模态文件信息提取解决方案!
阿里云推出《多模态数据信息提取》解决方案,涵盖文本、图像、音频、视频等多种数据形式的自动化处理。本文从部署体验、功能验证到实际应用,全面解析该方案的能力与潜力,帮助开发者高效提取和整合复杂数据,提升工作效率...
24 3
从多模态到精准洞察:深度解析多模态文件信息提取解决方案!
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
秒级响应 + 99.9%准确率:法律行业文本比对技术解析
本工具基于先进AI技术,采用自然语言处理和语义匹配算法,支持PDF、Word等格式,实现法律文本的智能化比对。具备高精度语义匹配、多格式兼容、高性能架构及智能化标注与可视化等特点,有效解决文本复杂性和法规更新难题,提升法律行业工作效率。
|
3月前
|
自然语言处理 数据可视化 前端开发
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
合合信息的智能文档处理“百宝箱”涵盖文档解析、向量化模型、测评工具等,解决了复杂文档解析、大模型问答幻觉、文档解析效果评估、知识库搭建、多语言文档翻译等问题。通过可视化解析工具 TextIn ParseX、向量化模型 acge-embedding 和文档解析测评工具 markdown_tester,百宝箱提升了文档处理的效率和精确度,适用于多种文档格式和语言环境,助力企业实现高效的信息管理和业务支持。
4103 5
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
|
2月前
|
存储 人工智能 自然语言处理
了解文档智能和知识挖掘
文档智能是 AI 的一个方面,用于管理、处理和使用在表单和文档中发现的大量各类数据。 借助文档智能,能够创建可自动处理合同、运行状况文档和财务表单等的软件
40 0
|
5月前
|
人工智能 运维 自然语言处理
从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系(总篇章)
【8月更文挑战第10天】从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系(总篇章)
从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系(总篇章)
|
4月前
|
人工智能 自然语言处理 数据库
从数据洞察到智能决策:合合信息&infiniflow RAG技术的实战案例分享
【9月更文挑战第3天】从数据洞察到智能决策:合合信息&infiniflow RAG技术的实战案例分享
|
4月前
|
存储 安全 搜索推荐
基因编辑:精准医疗与生物进化的新篇章
【9月更文挑战第11天】基因编辑技术作为精准医疗与生物进化的新篇章,正以前所未有的速度改变着我们的世界。它为我们提供了治疗遗传性疾病、实现个性化医疗、探索生物进化奥秘的新途径。然而,在享受技术带来的便利的同时,我们也需要清醒地认识到其面临的挑战和伦理考量。只有以开放、审慎的态度面对这一技术,充分发挥其潜力并避免潜在风险,我们才能确保基因编辑技术的健康发展,为人类带来更多的福祉和改变。
|
8月前
|
机器学习/深度学习 搜索推荐 算法
智能推荐系统有哪些特点?
智能推荐系统是在大数据的基础上,基于用户的兴趣进行个性化推荐,并且对用户和商品之间的交互信息进行持续监测和反馈,并不断优化推荐系统,从而提高用户体验、丰富平台内容、提高商业价值。 在智能推荐系统的加持下,内容生产从以“编辑推荐”为核心变成以“用户喜好”为核心。智能推荐系统不仅可以帮助平台筛选优质内容,还可以通过对用户数据的持续分析,挖掘出更多潜在需求。
|
8月前
|
机器学习/深度学习 自然语言处理 算法
数据智能分类的技术
数据智能分类的技术
220 6
|
数据采集 存储 搜索推荐
分析新闻评论数据并进行情绪识别
爬取新闻评论数据并进行情绪识别的目的是为了从网页中抓取用户对新闻事件或话题的评价内容,并从中识别和提取用户的情绪或态度,如积极、消极、中立等。爬取新闻评论数据并进行情绪识别有以下几个优势: 1)可以了解用户对新闻事件或话题的看法和感受,以及影响他们情绪的因素; 2)可以分析用户的情绪变化和趋势,以及与新闻事件或话题的相关性和影响力; 3)可以根据用户的情绪进行个性化的推荐或服务,如提供正能量的内容、提供帮助或建议等;
246 1