Python defaultdict 模块和 namedtuple 模块

简介: Python defaultdict 模块和 namedtuple 模块

在Python中有一些内置的数据类型,比如int, str, list, tuple, dict等。Python的collections模块在这些内置数据类型的基础上,提供了几个额外的数据类型:namedtuple, defaultdict, deque, Counter, OrderedDict等,其中defaultdict和namedtuple是两个很实用的扩展类型。defaultdict继承自dict,namedtuple继承自tuple。

一、defaultdict

1. 简介

在使用Python原生的数据结构dict的时候,如果用d[key]这样的方式访问,当指定的key不存在时,是会抛出KeyError异常的。但是,如果使用defaultdict,只要你传入一个默认的工厂方法,那么请求一个不存在的key时, 便会调用这个工厂方法使用其结果来作为这个key的默认值。

defaultdict在使用的时候需要传一个工厂函数(function_factory),defaultdict(function_factory)会构建一个类似dict的对象,该对象具有默认值,默认值通过调用工厂函数生成。

2. 示例

下面给一个defaultdict的使用示例:

>>> from collections import defaultdict
>>> s = [('xiaoming', 99), ('wu', 69), ('zhangsan', 80), ('lisi', 96), ('wu', 100), ('wu', 100), ('yuan', 98), ('xiaoming', 89)]
>>> d = defaultdict(list)
>>> for k, v in s:
...     d[k].append(v)
... 
>>> d
defaultdict(<type 'list'>, {'lisi': [96], 'xiaoming': [99, 89], 'yuan': [98], 'zhangsan': [80], 'wu': [69, 100, 100]})
>>> for k,v in d.items():
...     print '%s: %s' % (k, v)
... 
lisi: [96]
xiaoming: [99, 89]
yuan: [98]
zhangsan: [80]
wu: [69, 100, 100]
>>> 

对Python比较熟悉的同学可以发现defaultdict(list)的用法和dict.setdefault(key, [])比较类似,上述代码使用setdefault实现如下:

>>> s
[('xiaoming', 99), ('wu', 69), ('zhangsan', 80), ('lisi', 96), ('wu', 100), ('wu', 100), ('yuan', 98), ('xiaoming', 89)]
>>> d = {}
>>> for k,v in s:
...     d.setdefault(k, []).append(v)
... 
>>> d
{'lisi': [96], 'xiaoming': [99, 89], 'yuan': [98], 'zhangsan': [80], 'wu': [69, 100, 100]}

3. 原理

从以上的例子中,我们可以基本了解了defaultdict的用法,下面我们可以通过help(defaultdict)了解一下defaultdict的原理。通过Python console打印出的help信息来看,我们可以发现defaultdict具有默认值主要是通过missing方法实现的,如果工厂函数不为None,则通过工厂方法返回默认值,具体如下:

>>> help(defaultdict)
 |  __missing__(...)
 |      __missing__(key) # Called by __getitem__ for missing key; pseudo-code:
 |      if self.default_factory is None: raise KeyError((key,))
 |      self[key] = value = self.default_factory()
 |      return value

从上面的说明中,我们可以发现一下几个需要注意的地方:

  1. missing方法是在调用getitem方法发现KEY不存在时才调用的,所以,defaultdict也只会在使用d[key]或者d.getitem(key)的时候才会生成默认值;如果使用d.get(key)是不会返回默认值的,会出现KeyError;
  2. defaultdict主要是通过missing方法实现,所以,我们也可以通过实现该方法来生成自己的defaultdict

4. 版本

defaultdict是在Python 2.5之后才加入的功能,在旧版本的Python中是不支持这个功能的,不过,知道了它的原理,我们可以自己实现一个defaultdict。

try:
    from collections import defaultdict
except:
    class defaultdict(dict):

        def __init__(self, default_factory=None, *a, **kw):
            if (default_factory is not None and not hasattr(default_factory, '__call__')):
                raise TypeError('first argument must be callable')
            dict.__init__(self, *a, **kw)
            self.default_factory = default_factory

        def __getitem__(self, key):
            try:
                return dict.__getitem__(self, key)
            except KeyError:
                return self.__missing__(key)

        def __missing__(self, key):
            if self.default_factory is None:
                raise KeyError(key)
            self[key] = value = self.default_factory()
            return value

        def __reduce__(self):
            if self.default_factory is None:
                args = tuple()
            else:
                args = self.default_factory,
            return type(self), args, None, None, self.items()

        def copy(self):
            return self.__copy__()

        def __copy__(self):
            return type(self)(self.default_factory, self)

        def __deepcopy__(self, memo):
            import copy
            return type(self)(self.default_factory, copy.deepcopy(self.items()))

        def __repr__(self):
            return 'defaultdict(%s, %s)' % (self.default_factory, dict.__repr__(self))

二、namedtuple

namedtuple主要用来产生可以使用名称来访问元素的数据对象,通常用来增强代码的可读性,在访问一些tuple类型的数据时尤其好用。其实,在大部分时候你应该使用namedtuple替代tuple,这样可以让你的代码更容易读懂,更加pythonic。举个例子:

from collections import namedtuple

# 变量名和namedtuple中的第一个参数一般保持一致,但也可以不一样
Student = namedtuple('Student', 'id name score')
# 或者 Student = namedtuple('Student', ['id', 'name', 'score'])

students = [(1, 'Wu', 90), (2, 'Xing', 89), (3, 'Yuan', 98), (4, 'Wang', 95)]

for s in students:
    stu = Student._make(s)
    print stu

# Output:
# Student(id=1, name='Wu', score=90)
# Student(id=2, name='Xing', score=89)
# Student(id=3, name='Yuan', score=98)
# Student(id=4, name='Wang', score=95)

在上面的例子中,Student就是一个namedtuple,它和tuple的使用方法一样,可以通过index直接取,而且是只读的。这种方式比tuple容易理解多了,可以很清楚的知道每个值代表的含义。

Over!

目录
相关文章
|
3月前
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
158 62
|
2月前
|
Python
Python Internet 模块
Python Internet 模块。
133 74
|
3月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
141 63
|
3月前
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
3月前
|
Python
Python的模块和包
总之,模块和包是 Python 编程中非常重要的概念,掌握它们可以帮助我们更好地组织和管理代码,提高开发效率和代码质量
133 61
|
3月前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
3月前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
1月前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
32 3
|
3月前
|
JSON Linux 数据格式
Python模块:从入门到精通,只需一篇文章!
Python中的模块是将相关代码组织在一起的单元,便于重用和维护。模块可以是Python文件或C/C++扩展,Python标准库中包含大量模块,如os、sys、time等,用于执行各种任务。定义模块只需创建.py文件并编写代码,导入模块使用import语句。此外,Python还支持自定义模块和包,以及虚拟环境来管理项目依赖。
Python模块:从入门到精通,只需一篇文章!
|
3月前
|
Python
在Python中,可以使用内置的`re`模块来处理正则表达式
在Python中,可以使用内置的`re`模块来处理正则表达式
90 5

热门文章

最新文章

推荐镜像

更多