14 SVM - 代码案例一 - 鸢尾花数据SVM分类

简介:

SVM的章节已经讲完,具体内容请参考:《01 SVM - 大纲

常规操作:

1、头文件引入SVM相关的包
2、防止中文乱码
3、去警告
4、读取数据
5、数据分割训练集和测试集 8:2

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
from sklearn import svm#svm导入
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.exceptions import ChangedBehaviorWarning

## 设置属性防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

warnings.filterwarnings('ignore', category=ChangedBehaviorWarning)

## 读取数据
# 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度'
path = './datas/iris.data'  # 数据文件路径
data = pd.read_csv(path, header=None)
x, y = data[list(range(4))], data[4]
y = pd.Categorical(y).codes #把文本数据进行编码,比如a b c编码为 0 1 2
x = x[[0, 1]]

## 数据分割
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0, train_size=0.8)

__API 说明:__$\color{red}{sklearn.svm.SVC}$
引用: from sklearn.svm import SVC
功能: 使用SVM分类器进行模型构建
参数说明:
C: 误差项的惩罚系数,默认为1.0;一般为大于0的一个数字,C越大表示在训练过程中对于总误差的关注度越高,也就是说当C越大的时候,对于训练集的表现会越好,但是有可能引发过度拟合的问题; (overfiting)
__kernel:__指定SVM内部函数的类型,可选值:linear、poly、rbf、sigmoid、precomputed(基本不用,有前提要求,要求特征属性数目和样本数目一样);默认是rbf;
__degree:__当使用多项式函数作为svm内部的函数的时候,给定多项式的项数,默认为3;
__gamma:__当SVM内部使用poly、rbf、sigmoid的时候,核函数的系数值,当默认值为auto的时候,实际系数为1/n_features;
__coef0:__当核函数为poly或者sigmoid的时候,给定的独立系数,默认为0;
__probability:__是否启用概率估计,默认不启动,不太建议启动;
__shrinking:__是否开启收缩启发式计算,默认为True;
tol: 模型构建收敛参数,当模型的的误差变化率小于该值的时候,结束模型构建过程,默认值:1e-3;
__cache_size:__在模型构建过程中,缓存数据的最大内存大小,默认为空,单位MB;
__class_weight:__给定各个类别的权重,默认为空;
__max_iter:__最大迭代次数,默认-1表示不限制;
__decision_function_shape:__决策函数,可选值:ovo和ovr,默认为None;推荐使用ovr;1.7以上版本才有。

数据SVM分类器构建

gamma值越大,训练集的拟合就越好,但是会造成过拟合,导致测试集拟合变差。
gamma值越小,模型的泛化能力越好,训练集和测试集的拟合相近,但是会导致训练集出现欠拟合问题,从而准确率变低,导致测试集准确率也变低。

clf = SVC(C=1,kernel='rbf',gamma=0.1)

## 模型训练
clf.fit(x_train, y_train)


计算模型的准确率/精度
print (clf.score(x_train, y_train)) 
print ('训练集准确率:', accuracy_score(y_train, clf.predict(x_train)))
print (clf.score(x_test, y_test))
print ('测试集准确率:', accuracy_score(y_test, clf.predict(x_test)))
计算决策函数的结构值以及预测值(decision_function计算的是样本x到各个分割平面的距离<也就是决策函数的值>)
print ('decision_function:\n', clf.decision_function(x_train))
print ('\npredict:\n', clf.predict(x_train))

输出:

0.85
训练集准确率: 0.85
0.733333333333
测试集准确率: 0.733333333333
decision_function:
[[-0.25039727  1.0886331   2.16176417]
[ 1.03478736  2.11650098 -0.15128834]
[ 2.23214438  1.00598335 -0.23812773]
[-0.19163546  2.1175139   1.07412155]
[-0.32152579  1.14496276  2.17656303]
[ 1.02173467  2.16988825 -0.19162293]
[ 2.14580325  0.95677746 -0.10258071]
[-0.23566638  2.17796366  1.05770273]
[-0.13008471  2.12075927  1.00932543]
[-0.19844194  2.1995431   0.99889884]
[-0.36343522  1.08701831  2.27641692]
[ 2.30535715  1.04393285 -0.34929   ]
[-0.35915878  1.06384614  2.29531264]
[ 2.29333629  0.99860275 -0.29193904]
[ 2.21795456  0.97111601 -0.18907056]
[ 0.92054508  2.2724345  -0.19297958]
[-0.2997012   1.10328323  2.19641797]
[-0.2730624   1.03890272  2.23415968]
[-0.33839217  2.26132199  1.07707018]
[-0.44273262  1.17653689  2.26619573]
[-0.15877661  2.21746358  0.94131303]
[-0.44724083  1.02472152  2.42251931]
[-0.17202518  1.05287918  2.119146  ]
[-0.14988387  2.23343312  0.91645074]
[-0.31861821  1.16774019  2.15087802]
[-0.29622421  1.14950193  2.14672228]
[ 1.0664275   2.1904298  -0.2568573 ]
[-0.35991183  1.20227659  2.15763525]
[-0.35330602  1.04124945  2.31205657]
[-0.2997012   1.10328323  2.19641797]
[-0.05522314  2.03779287  1.01743027]
[ 2.25203496  1.06973396 -0.32176891]
[-0.17449621  2.18085941  0.9936368 ]
[-0.11021164  2.18046075  0.92975089]
[-0.05865155  2.14084287  0.91780868]
[-0.12662311  2.21612151  0.9105016 ]
[-0.19163546  2.1175139   1.07412155]
[-0.38070881  1.0296007   2.35110811]
[ 2.24957743  0.96861839 -0.21819582]
[ 2.35477694  1.05478502 -0.40956196]
[-0.34332437  1.16288782  2.18043655]
[-0.06527735  2.12119172  0.94408563]
[ 2.14185505  1.03254567 -0.17440072]
[ 2.27389225  0.85571723 -0.12960948]
[-0.35915878  1.06384614  2.29531264]
[ 2.30724951  1.05732668 -0.3645762 ]
[-0.13008471  2.12075927  1.00932543]
[ 1.00329378  2.20214884 -0.20544262]
[ 2.37889994  0.99914274 -0.37804268]
[-0.38865303  2.25320429  1.13544874]
[-0.29145938  0.96854255  2.32291684]
[-0.09164014  2.14161983  0.95002031]
[ 2.22623117  1.08968182 -0.31591299]
[-0.4096892   1.06746523  2.34222397]
[-0.33660296  1.0467762   2.28982676]
[-0.2997012   1.10328323  2.19641797]
[-0.32152579  1.14496276  2.17656303]
[ 2.33278328  0.94341849 -0.27620177]
[ 2.32663406  1.00960575 -0.33623981]
[-0.25094655  1.06568299  2.18526357]
[-0.2730624   1.03890272  2.23415968]
[ 2.13304331  1.19108118 -0.32412449]
[-0.11663626  1.03526731  2.08136896]
[ 2.19635991  1.09554303 -0.29190293]
[-0.19042462  2.21791314  0.97251148]
[-0.35915878  1.06384614  2.29531264]
[ 2.37987847  1.02502782 -0.40490629]
[ 2.31697854  0.97865204 -0.29563057]
[-0.42101983  1.06048387  2.36053596]
[ 2.26321395  1.00248244 -0.26569639]
[ 2.3322641   1.06231608 -0.39458018]
[ 2.2645061   0.93262533 -0.19713143]
[-0.17206568  2.24979256  0.92227312]
[-0.31794906  1.05203355  2.2659155 ]
[-0.44593685  1.03180134  2.41413551]
[ 2.26321395  1.00248244 -0.26569639]
[ 2.22247594  1.07534695 -0.29782289]
[ 2.20680036  1.02662003 -0.23342039]
[-0.11748127  2.16161947  0.9558618 ]
[-0.32277435  1.09831759  2.22445676]
[ 2.21795026  1.05994599 -0.27789625]
[ 2.21270515  1.04364305 -0.2563482 ]
[-0.2986835   1.12654041  2.17214309]
[ 2.14185505  1.03254567 -0.17440072]
[-0.5         1.07338601  2.42661399]
[ 1.0415998   2.20742886 -0.24902865]
[-0.30569708  0.92274296  2.38295412]
[-0.32111039  1.07499685  2.24611354]
[ 2.36439692  0.89257767 -0.25697458]
[-0.1613555   2.11948124  1.04187426]
[ 2.161655    0.92086513 -0.08252013]
[-0.47608835  1.04954709  2.42654126]
[ 2.33278328  0.94341849 -0.27620177]
[ 2.30535715  1.04393285 -0.34929   ]
[-0.47075253  1.07424442  2.39650811]
[ 2.24367895  1.03936622 -0.28304517]
[-0.14575094  1.03325696  2.11249398]
[-0.11748127  2.16161947  0.9558618 ]
[-0.17449621  2.18085941  0.9936368 ]
[-0.16701198  2.19987473  0.96713725]
[-0.22523374  1.06936924  2.1558645 ]
[-0.34404723  1.09287868  2.25116855]
[-0.35991183  1.20227659  2.15763525]
[-0.34404723  1.09287868  2.25116855]
[ 2.16544172  1.10090524 -0.26634696]
[-0.14988387  2.23343312  0.91645074]
[-0.32111039  1.07499685  2.24611354]
[-0.17449621  2.18085941  0.9936368 ]
[ 2.23827935  1.02296045 -0.2612398 ]
[-0.34541291  1.11637043  2.22904248]
[ 0.96788879  2.12033521 -0.088224  ]
[-0.07704422  2.07965201  0.99739221]
[-0.3958175   1.23359604  2.16222145]
[ 2.13504156  1.01391343 -0.14895499]
[ 2.31059852  0.96260146 -0.27319998]
[ 2.22247594  1.07534695 -0.29782289]
[-0.27283046  1.13075432  2.14207614]
[-0.17449621  2.18085941  0.9936368 ]
[-0.29717239  0.92710063  2.37007176]
[ 2.33180515  1.03788212 -0.36968728]]

predict:
[2 1 0 1 2 1 0 1 1 1 2 0 2 0 0 1 2 2 1 2 1 2 2 1 2 2 1 2 2 2 1 0 1 1 1 1 1
2 0 0 2 1 0 0 2 0 1 1 0 1 2 1 0 2 2 2 2 0 0 2 2 0 2 0 1 2 0 0 2 0 0 0 1 2
2 0 0 0 1 2 0 0 2 0 2 1 2 2 0 1 0 2 0 0 2 0 2 1 1 1 2 2 2 2 0 1 2 1 0 2 1
1 2 0 0 0 2 1 2 0]

画图:

N = 500
x1_min, x2_min = x.min()
x1_max, x2_max = x.max()

t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, N)
x1, x2 = np.meshgrid(t1, t2)  # 生成网格采样点
grid_show = np.dstack((x1.flat, x2.flat))[0] # 测试点


grid_hat = clf.predict(grid_show)       # 预测分类值
grid_hat = grid_hat.reshape(x1.shape)  # 使之与输入的形状相同

cm_light = mpl.colors.ListedColormap(['#00FFCC', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.figure(facecolor='w')
## 区域图
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
## 所以样本点
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark)      # 样本
## 测试数据集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10)     # 圈中测试集样本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花SVM特征分类', fontsize=16)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
plt.show()

15 SVM - 代码案例二 - 鸢尾花数据不同分类器效果比较

相关文章
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
|
3月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
73 3
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战
Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战
146 0
Python实现支持向量机SVM分类模型线性SVM决策过程的可视化项目实战
|
6月前
|
机器学习/深度学习 算法 C++
选择适合的SVM模型进行分类任务
选择SVM模型时需考虑数据线性可分性、问题类型(二分类或多分类)、优化算法(凸优化优势)及性能指标(如准确率、召回率)。数据非线性可分时可使用核技巧。针对多分类,有OVO、OVA和DAG方法。同时,利用交叉验证评估模型泛化能力。
45 4
|
机器学习/深度学习 移动开发 资源调度
机器学习算法(二): 基于鸢尾花数据集的朴素贝叶斯(Naive Bayes)预测分类
机器学习算法(二): 基于鸢尾花数据集的朴素贝叶斯(Naive Bayes)预测分类
|
6月前
|
机器学习/深度学习 算法
SVM算法、朴素贝叶斯算法讲解及对iris数据集分类实战(附源码)
SVM算法、朴素贝叶斯算法讲解及对iris数据集分类实战(附源码)
220 0
|
机器学习/深度学习 传感器 数据采集
【SVM分类】基于支持向量机的数据分类预测(libsvm)附matlab代码
【SVM分类】基于支持向量机的数据分类预测(libsvm)附matlab代码
|
机器学习/深度学习 Python
【统计学习方法】线性可分支持向量机对鸢尾花(iris)数据集进行二分类
【统计学习方法】线性可分支持向量机对鸢尾花(iris)数据集进行二分类
443 0
【统计学习方法】线性可分支持向量机对鸢尾花(iris)数据集进行二分类
|
机器学习/深度学习 数据可视化
随机森林和KNN分类结果可视化(Sklearn)
随机森林和KNN分类结果可视化(Sklearn)
250 0
|
机器学习/深度学习 存储 算法
机器学习算法(四): 基于支持向量机的分类预测(SVM)
机器学习算法(四): 基于支持向量机的分类预测(SVM)
下一篇
无影云桌面