潭潭
2018-11-28
8197浏览量
用户存储海量的文档、媒体文件等数据的同时,对文件元数据(Meta)的管理不可或缺。元数据拥有多维度的字段信息,基本信息包含文件大小、创建时间、用户等。随着人工智能的发展,通过AI技术提取文件核心要素也成为文件元数据的重要信息。以图片为例:用户通过智能媒体服务,获取分析图片核心标签并为标签打分,用户还可提取人脸识别相关信息,以及地理位置等信息,提取的信息也需要存储到文件元数据信息中。因而文件元数据的信息量不断增加,格式、类型也不断呈现多元化。
某智能媒体管理平台,为用户提供文件(图片、视频等)管理服务,用户通过自研(或售卖)的智能媒体分析工具,为目标文件进行分析。用分析后的信息丰富原有的元数据信息。因此,平台需要一套有效的元数据管理方案,为用户提供元数据信息的管理、分析、统计功能。例如:
用户A:【用户A的文件】*【近1年】*【标签含[开心]】*的所有图片,按标签分数排序
用户B:【用户B的文件】*【出现某某明星】*的所有视频,按明星相似度排序
......
管理系统样例,如下所示:__官网控制台地址:__项目样例
对于智能元数据管理系统,通常需要考虑的技术点,包含以下方面:
使用表格存储(TableStore)研发的多元索引(SearchIndex)方案,可以有效解决海量元数据的管理问题。TableStore具有即开即用,按量收费等特点。
TableStore作为阿里云提供的一款全托管、分布式NoSql型数据存储服务,具有【海量数据存储】、【热点数据自动分片】、【海量数据多维检索】等功能,天然地解决了数据大爆炸这一挑战;在应对数据横向、纵向扩展上,充分发乎其优势。多元索引随时创建,是Meta元数据管理的合适方案。
同时,SearchIndex功能在保证用户数据高可用的基础上,提供了数据多维度搜索、统计等能力。针对多种场景创建多种索引,实现多种模式的检索。用户可以仅在需要的时候创建、开通索引。由TableStore来保证数据同步的一致性,这极大的降低了用户的方案设计、服务运维、代码开发等工作量。
样例内嵌在表格存储控制台中,用户可登录控制台体验系统(若为表格存储的新用户,需要点击开通服务后体验,开通免费,Meta数据存储在公共实例中,体验不消耗用户存储、流量、Cu)。
注:该样例提供了【亿量级】文件元数据。官网控制台地址:项目样例
若您对于智能元数据管理系统感兴趣,希望开始自己系统的搭建之旅,只需按照如下步骤便可以着手搭建了:
通过控制台开通表格存储服务,表格存储即开即用(后付费),采用按量付费方式,已为用户提供足够功能测试的免费额度。表格存储官网控制台、免费额度说明。
通过控制台创建表格存储实例,选择支持多元索引的Region。(当前阶段SearchIndex功能尚未商业化,暂时开放北京,上海,杭州和深圳四地,其余地区将逐渐开放)
创建实例后,提交工单申请多元索引功能邀测(现多元索引功能已商业化,无需申请)。
使用具有多元索引(SearchIndex)的SDK,官网地址,暂时java、go、node.js三种SDK增加了新功能
<dependency>
<groupId>com.aliyun.openservices</groupId>
<artifactId>tablestore</artifactId>
<version>4.8.0</version>
</dependency>
$ go get github.com/aliyun/aliyun-tablestore-go-sdk
$ npm install tablestore@4.1.0
表名:order_contract
列名
|
数据类型
|
索引类型
|
字段说明
|
_id(主键列)
|
String
|
MD5(fId)避免热点
|
|
fId
|
String
|
KEYWORD
|
文件编号
|
userId
|
String
|
KEYWORD
|
用户编号
|
tags
|
String
|
Nested: [{
tag: String,
score: LONG
}]
|
多标签使用嵌套索引(数组字符串) '[{"tag":"表格存储","score":97.317251},{"score":50.770918,"tag":"沙漠"}]'
|
size
|
long
|
LONG
|
文件大小
|
createdAt
|
long
|
LONG
|
创建时间(时间戳)
|
url
|
String
|
KEYWORD
|
文件链接(存储于oss)
|
...
|
...
|
...
|
...
|
创建智能元数据表,用户仅需维护一个实例,按如下方式在实例下建表:
通过控制台创建、管理数据表(用户也可以通过SDK直接创建):
2、创建数据表索引
TableStore自动做全量、增量的索引数据同步:用户可以通过控制台创建、管理SearchIndex(用户也可通过SDK创建):
插入部分测试数据(控制台样例中插入了1亿条数据,用户自己可以通过控制台插入少量测试数据);
文件编号 | 文件ID(md5主键) | 用户编号 | 标签(数组字符串) | 类型 | 链接 | 大小 |
---|---|---|---|---|---|---|
f052535742 | 1bce.... | u05254 | [{"score":99.999999,"tag":"表格存储"},{"score":78.962224,"tag":"冰雹"},{"score":18.328385,"tag":"开心"},{"score":16.886812,"tag":"雪山"}] | image | https://prd-console-demo.oss-cn-hangzhou.aliyuncs.com/image/imm1.jpg | 9022066 |
数据读取分为两类:
基于原生表格存储的主键列获取:getRow, getRange, batchGetRow等。主键读取用于索引(自动)反查,用户也可以提供主键(文件编号md5)的单条查询的页面,亿量级下查询速度保持在十毫秒量级。单主键查询方式不支持多维度检索;
基于新SearchIndex功能Query:search接口。用户可以自由设计索引字段的多维度条件组合查询。通过设置选择不同的查询参数,构建不同的查询条件、不同排序方式;目前支持:精确查询、范围查询、前缀查询、匹配查询、通配符查询、短语匹配查询、分词字符串查询、嵌套查询、GEO查询,并通过布尔与、或组合。
如【标签为:表格存储,创建时间[2018-01-01, 2018-12-01)】文件的信息:(SDK与控制查询)
List<Query> mustQueries = new ArrayList<Query>();
//嵌套字段Query
TermQuery termQuery = new TermQuery();
termQuery.setFieldName("tags.tag");
termQuery.setTerm(ColumnValue.fromString("表格存储"));
NestedQuery nestedQuery = new NestedQuery();
nestedQuery.setPath("tags");
nestedQuery.setScoreMode(ScoreMode.Avg);
nestedQuery.setQuery(termQuery);
mustQueries.add(nestedQuery);
//范围Query
RangeQuery rangeQuery = new RangeQuery();
rangeQuery.setFieldName("createdAt");
rangeQuery.setFrom(ColumnValue.fromLong(1514793600000, true);
rangeQuery.setTo(ColumnValue.fromLong(1543651200000, false);
mustQueries.add(rangeQuery);
//精确Query
TermQuery termQuery = new TermQuery();
termQuery.setFieldName("type");
termQuery.setTerm(ColumnValue.fromString("image"));
mustQueries.add(termQuery);
BoolQuery boolQuery = new BoolQuery();
boolQuery.setMustQueries(mustQueries);
这样,系统的核心代码已经完成,基于表格存储搭建智能元数据管理系统,是不是很简单?
对表格存储(TableStore)感兴趣的用户,欢迎加入【表格存储公开交流群】,群号:11789671。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。