八大排序算法python实现

简介: 1.冒泡排序冒泡排序重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

1.冒泡排序

冒泡排序重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

步骤:

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。

  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

  3. 针对所有的元素重复以上的步骤,除了最后一个。

  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

代码实现:

# -*- coding:utf-8 -*-
def bubble_sort(list):
    length=len(list)
    for index in range(length):
        for i in range(1,length-index):
            if list[i-1]<list[i]:
                list[i],list[i-1]=list[i-1],list[i]
    return list
#一下为测试其正确性:
list=[10,23,1,53,654,54,16,646,65,3155,546,31]
print bubble_sort(list)

2.选择排序

从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

# -*- coding:utf-8 -*-
def select_sort(list):
    length=len(list)
    for index in range(length):
        for i in range(index,length):
            if list[index]<list[i]:
                list[index],list[i]=list[i],list[index]
    return list

#测试
list=[10,23,1,53,654,54,16,646,65,3155,546,31]
print select_sort(list)

3.插入排序

每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。

步骤:

  1. 从第一个元素开始,该元素可以认为已经被排序
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
  5. 将新元素插入到该位置后
  6. 重复步骤2~5

代码实现:

# -*- coding:utf-8 -*-
def insert_sort(lists):
    # 插入排序
    count = len(lists)
    for i in range(1, count):
        key = lists[i]
        j = i - 1
        while j >= 0:
            if lists[j] > key:
                lists[j + 1] = lists[j]
                lists[j] = key
            j -= 1
    return lists
#测试
list=[10,23,1,53,654,54,16,646,65,3155,546,31]
print insert_sort(lists)

4.希尔排序

先取一个小于n的整数d1作为第一个增量,把文件的全部记录分组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量即所有记录放在同一组中进行直接插入排序为止。

# -*- coding:utf-8 -*-
def shell_sort(list):
    length=len(list)
    dist=length/2
    while dist>0:
        for i in range(dist,length):
            temp=list[i]
            j=i
            while j>=dist and temp<list[j-dist]:
                list[j]=list[j-dist]
                j-=dist
            list[j]=temp
        dist/=2
    return list

#测试
list=[10,23,1,53,654,54,16,646,65,3155,546,31]
print shell_sort(list)

5.归并排序

归并排序,就是把两个已经排列好的序列合并为一个序列。

代码实现:

# -*- coding:utf-8 -*-
#算法逻辑比较简单,以第一个list为基准,第二个向第一个插空
def merge_sort(list1,list2):
    length_list1=len(list1)
    length_list2=len(list2)
    list3=[]
    j=0
    for i in range(length_list1):
        while list2[j]<list1[i] and j<length_list2:
            list3.append(list2[j])
            j=j+1
        list3.append(list1[i])
    if j<(length_list2-1):
        for k in range(j,length_list2):
            list3.append(list2[k])
    return list3
#测试
list1=[1,3,5,10]
list2=[2,4,6,8,9,11,12,13,14]
print merge_sort(list1,list2)

6.快速排序

随意选择一个数字作为基准,比基准数字大的在右,比基准数字小的在左。

# -*- coding:utf-8 -*-
def kp(arr,i,j):#快排总函数
                #制定从哪开始快排
    if i<j:
        base=kpgc(arr,i,j)
        kp(arr,i,base)
        kp(arr,base+1,j)
def kpgc(arr,i,j):#快排排序过程
    base=arr[i]
    while i<j:
        while i<j and arr[j]>=base:
            j-=1
        while i<j and arr[j]<base:
            arr[i]=arr[j]
            i+=1
            arr[j]=arr[i]
        arr[i]=base
    return i
ww=[3,2,4,1,59,23,13,1,3]
print ww
kp(ww,0,len(ww)-1)
print ww

7.堆排序

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

步骤:

  1. 创建最大堆:将堆所有数据重新排序,使其成为最大堆
  2. 最大堆调整:作用是保持最大堆的性质,是创建最大堆的核心子程序
  3. 堆排序:移除位在第一个数据的根节点,并做最大堆调整的递归运算

代码实现:

# -*- coding:utf-8 -*-
def head_sort(list):
    length_list = len(list)
    first=int(length_list/2-1)
    for start in range(first,-1,-1):
        max_heapify(list,start,length_list-1)
    for end in range(length_list-1,0,-1):
        list[end],list[0]=list[0],list[end]
        max_heapify(list,0,end-1)
    return list

def max_heapify(ary,start,end):
    root = start
    while True:
        child = root*2 + 1
        if child > end:
            break
        if child + 1 <= end and ary[child]<ary[child+1]:
            child = child + 1
        if ary[root]<ary[child]:
            ary[root],ary[child]=ary[child],ary[root]
            root=child
        else:
            break
#测试:
list=[10,23,1,53,654,54,16,646,65,3155,546,31]
print head_sort(list)

8.计数排序

# -*- coding:utf-8 -*-
def count_sort(list):
    max=min=0
    for i in list:
        if i < min:
            min = i
        if i > max:
            max = i 
    count = [0] * (max - min +1)
    for j in range(max-min+1):
        count[j]=0
    for index in list:
        count[index-min]+=1
    index=0
    for a in range(max-min+1):
        for c in range(count[a]):
            list[index]=a+min
            index+=1
    return list
    #测试:
list=[10,23,1,53,654,54,16,646,65,3155,546,31]
print count_sort(list)

本文来源于自己刚学数据结构时的笔记,文字叙述以及代码实现思维参考了百度百科,大神@EINDEX的专栏以及网上搜到的经验贴,感激ing_

目录
相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
72 21
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
20天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
46 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
17天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
31 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3天前
|
存储 算法 Python
火箭般的提升!学会Python并查集,让你的算法能力飞跃新高度!
火箭般的提升!学会Python并查集,让你的算法能力飞跃新高度!
9 1
|
14天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
35 2
|
17天前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
在 Python 算法设计中,理解并巧妙运用时间复杂度和空间复杂度的知识,是实现高效、优雅代码的必经之路。通过不断地实践和优化,我们能够在这两个因素之间找到最佳的平衡点,创造出性能卓越的程序。
33 4
|
18天前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
32 4
|
16天前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
26 1
|
17天前
|
算法 计算机视觉 Python
Python并查集大揭秘:让你在算法界呼风唤雨,秒杀一切复杂场景!
在编程与算法的广袤天地中,总有一些工具如同神兵利器,能够助你一臂之力,在复杂的问题前游刃有余。今天,我们就来深入探讨这样一件神器——Python并查集(Union-Find),看看它是如何让你在算法界呼风唤雨,轻松应对各种复杂场景的。
39 2
|
16天前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
37 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台