数据结构(四):平衡二叉树(AVL树)

简介: 通过之前对二叉搜索树介绍可知,将集合构造为二叉搜索树结构,该结构下对树中节点的查询、删除和插入三种操作,时间复杂度均为 ~。影响时间复杂度的因素即为二叉树的高,为了尽量避免树中每层上只有一个节点的情况,这里引入平衡二叉树。

通过之前对二叉搜索树介绍可知,将集合构造为二叉搜索树结构,该结构下对树中节点的查询、删除和插入三种操作,时间复杂度均为 O(log_2N)~O(N)。影响时间复杂度的因素即为二叉树的高,为了尽量避免树中每层上只有一个节点的情况,这里引入平衡二叉树。

定义

平衡二叉树也叫自平衡二叉搜索树(Self-Balancing Binary Search Tree),所以其本质也是一颗二叉搜索树,不过为了限制左右子树的高度差,避免出现倾斜树等偏向于线性结构演化的情况,所以对二叉搜索树中每个节点的左右子树作了限制,左右子树的高度差称之为平衡因子,树中每个节点的平衡因子绝对值不大于 1,此时二叉搜索树称之为平衡二叉树。

自平衡是指,在对平衡二叉树执行插入或删除节点操作后,可能会导致树中某个节点的平衡因子绝对值超过 1,即平衡二叉树变得“不平衡”,为了恢复该节点左右子树的平衡,此时需要对节点执行旋转操作。

情景分析

在执行插入或删除节点操作后,平衡因子绝对值变为大于 1 的情况,即左右子树的高度差为 -22 的情况,可以归纳为如下四种:

  • 左左情况(LL)

LL 情况是指根节点的平衡因子为 2,根节点的左子节点平衡因子为 01

LL_1

如图 LL_1 所示,当节点 C 的子节点被删除,或者节点 D 插入子节点 F 时,根节点 A 的平衡因子变为 2A 的左子节点 B 的平衡因子为 1

LL_2

或者如图 LL_2 所示,当节点 C 的子节点被删除,根节点 A 的平衡因子变为 2A 的左子节点 B 的平衡因子为 0

当根节点的左子树高度比右子树的高度大 2,因为平衡二叉树是一种有序结构,节点值之间具有大小关系,所以如果根节点保持不变,左右子树始终分隔两岸,则无论如何调整节点位置,二叉树始终不可能恢复平衡。所以需要更换根节点,使得新的根节点的左右子树的高度趋于平衡。

该情况下需要对平衡二叉树执行右旋操作:

  1. 设置根节点 root 的左子节点为新的根节点 root_{new}
  2. root_{new} 节点的右子树作为 root 节点的左子树,将 root 节点作为 root_{new} 的右子树,即降低“左子树”高度,提升“右子树”高度,使得新的左右子树高度趋于平衡;

对于图 LL_1,节点 B 的平衡因子为 1,设 B 节点的左子树 D 高度为 h,则右子树 E 高度为h-1,因为 A 的平衡因子为 2,所以二叉树 C 的高度为: h-1。则右旋操作后,B 的左子树高度不变为 h,右子树高度为:1+max(height(C),height(E))=h,此时二叉树为平衡二叉树,如下图 balanced_LL_1

balanced_LL_1

对于图 LL_2,节点 B 的平衡因子为 0,设 B 节点的左右子树高度为 h,则二叉树 C 的高度为: h-1。右旋操作后,B 的左子树高度不变为 h,右子树高度为:1+max(height(C),height(E))=h+1,此时二叉树为平衡二叉树,如下图 balanced_LL_2

balanced_LL_2
右旋代码
# rotate from left to right with the left-child node as the axis
def rotateL2R(node):
    leftChild = node.lchild
    leftChild.rchild,node.lchild = node,leftChild.rchild   # rotate
    updateHeight(node)
    updateHeight(leftChild)
    return leftChild

其中 updateHeight 函数作用为更新调整后节点的平衡因子,因为右旋操作平衡因子变化的节点只有两个:原根节点和新根节点,即根节点和根节点的左子节点,所以只需要对这两个节点执行 updateHeight 函数。函数代码参考如下:

更新二叉树高度
# update the height of the node
def updateHeight(root):
    if root.lchild and root.rchild:
        root.height = max(root.lchild.height, root.rchild.height) + 1
    elif root.lchild:
        root.height = root.lchild.height + 1
    elif root.rchild:
        root.height = root.rchild.height + 1
    else:
        root.height = 0

树的高度也就是左右子树的高度最大值加一,若无子树,则设置树高为零。

  • 右右情况(RR)

该情况与上面的左左情况具有对称性,对平衡二叉树执行插入或删除节点操作后,根节点的平衡因子变为 -2,根节点的右子节点平衡因子为 -10,为了恢复二叉树的平衡,需要进行左旋,来使得新的左右子树高度区域平衡。

RR

如上图 RR 所示,该情况下需要对平衡二叉树执行左旋操作:

  1. 设置根节点 root 的右子节点为新的根节点 root_{new}
  2. root_{new} 节点的左子树作为 root 节点的右子树,将 root 节点作为 root_{new} 的左子树,即降低“右子树”高度,提升“左子树”高度,使得新的左右子树高度趋于平衡;

左旋操作后,平衡二叉树如图 balanced_RR 所示。

balanced_RR
左旋代码
# rotate from right to left with the right-child node as the axis
def rotateR2L(node):
    rightChild = node.rchild
    rightChild.lchild, node.rchild = node, rightChild.lchild  # rotate
    updateHeight(node)
    updateHeight(rightChild)
    return rightChild

左旋操作同右旋一样,只更改了原根节点和新根节点的平衡因子,所以只需要对这两个节点执行 updateHeight 函数。

  • 左右情况

该情况下根节点的平衡因子与左左情况相同,都为 2,不同之处在于左子节点的平衡因子为 -1,若按照之前直接进行右旋操作,则旋转操作后二叉树扔处于不平衡状态。

对于图 LR,节点 B 的平衡因子为 -1,设 B 节点的左子树 D 高度为 h,则右子树 E 高度为h+1,因为 A 的平衡因子为 2,所以二叉树 C 的高度为: h。则右旋操作后,B 的左子树高度不变为 h,右子树高度为:1+max(height(C),height(E))=h+2,因为 B 的平衡因子为 -2,所以按此方式的旋转操作没有效果。

LR

所以该情况下,首先需要对根节点的左子节点进行调整,即将左子节点的平衡因子由 -1 调整为 1, 使得当前情况转换为 LL 情况,然后再对二叉树执行右旋操作。

step 1:对左子树执行左旋操作

step_1

step 2:对二叉树执行右旋操作

step_2
  • 右左情况

该情况与上面左右情况对称,根节点的平衡因子为 -2,右子节点平衡因子为 1,需要首先对右子树进行右旋操作,调整二叉树为 RR 情况,再对二叉树执行左旋操作。

RL

step 1:对右子树执行右旋操作

step_1

step 2:对二叉树执行左旋操作

step_2

性能分析

因为平衡二叉树也是二叉搜索树,回顾二叉搜索树中的操作复杂度,查询、插入和删除复杂度均为 log_2N~N。平衡二叉树中查询复杂度影响因素自然为树的高度;插入节点操作可以拆分为两个步骤:查询节点位置,插入节点后平衡操作;删除节点操作同理可以拆分为两个步骤:查询节点位置,删除节点后平衡操作。

平衡调节过程中可能存在旋转操作,递归执行的次数则依赖于树的高度(可以优化为当前节点平衡因子不发生变化,则取消向上递归)。所以平衡二叉树中查询、插入和删除节点操作的复杂度依赖于树高。

平衡二叉树因为左右子树的平衡因子限制,所以不可能存在类似于斜树的情况,因为任一节点的左右子树高度差最大为一,且二叉树具有对称性,所以不妨设每个子树的左子树高度大于右子树高度。

AVL

根据平衡二叉树定义可知,若二叉树左子树高度为 h(h \ge 2),则右子树高度最少也要是 h-1,方能满足平衡二叉树的平衡特性。以 F(H) 表示高度为 H 的平衡二叉树的最少节点个数,若二叉树不是空树则有:

F(0) = 1
F(1) = 2
F(2) = 4
F(H) = F(H-1)+F(H-2)+1(H \ge 3)

根据推导公式可知,平衡二叉树的高度最大为 O(log_{\frac{1+\sqrt5}2}N)。当二叉树向完全二叉树靠拢,尽量填满每层上的节点时,树的高度最小,为 O(log_2N)。所以相对于二叉搜索树,平衡二叉树避免了向线性结构演化的倾向,查询、插入和删除节点的时间复杂度为 O(log_2N)~O(log_{\frac{1+\sqrt5}2}N)。因为每个节点上需要保存平衡因子,所以空间复杂度要略高于二叉搜索树。

代码附录

python版本:3.7,树中的遍历、节点插入和删除操作使用的是递归形式

  • 树节点定义
# tree node definition
class Node(object):
    def __init__(self, value, height=0, lchild=None, rchild=None):
        self.lchild = lchild
        self.rchild = rchild
        self.value = value
        self.height = height   

相对于二叉搜索树的节点定义,增加了 height 属性。

  • 树定义
# tree definition
class Tree(object):
    def __init__(self, root=None):
        self.root = root

    # node in-order traversal(LDR)
    def traversal(self):
        traversal(self.root)

    # insert node
    def insert(self, value):
        self.root = insert(self.root, value)

    # delete node
    def delete(self, value):
        self.root = delete(self.root, value)

树结构定义与二叉搜索树中结构相同保持不变。

  • 模块中对树结构中的函数进行实现
# node in-order traversal(LDR)
def traversal(node):
    if not node:
        return
    traversal(node.lchild)
    print(node.value, 'height=', node.height, end=', ')
    traversal(node.rchild)

# insert node
'''
the recursive insert operation has a flaw,
that the binary tree will recursively updates the height of the parent node 
even if the inserted element already exists.
'''
def insert(root, value):
    if not root:
        return Node(value)
    if value < root.value:
        root.lchild = insert(root.lchild, value)
    elif value > root.value:
        root.rchild = insert(root.rchild, value)
    return checkBalance(root)

# check whether the tree is balanced
def checkBalance(root):
    if not root:
        return None
    if abs(heightDiffL2R(root)) < 2:  # the tree is balance
        updateHeight(root)
    elif heightDiffL2R(root) == 2:  # situation L
        if heightDiffL2R(root.lchild) == -1:  # situation LR
            root.lchild = rotateR2L(root.lchild)
            root = rotateL2R(root)
        else:  # situation LL
            root = rotateL2R(root)
    elif heightDiffL2R(root) == -2:  # situation R
        if heightDiffL2R(root.rchild) == 1:  # situation RL
            root.rchild = rotateL2R(root.rchild)
            root = rotateR2L(root)
        else:  # situation RR
            root = rotateR2L(root)
    return root

# get the height difference between left-child and right-child
def heightDiffL2R(node):
    if node.lchild and node.rchild:
        return node.lchild.height - node.rchild.height
    if node.lchild:
        return node.lchild.height + 1
    if node.rchild:
        return -(node.rchild.height + 1)
    return 0

# update the height of the node
def updateHeight(root):
    if root.lchild and root.rchild:
        root.height = max(root.lchild.height, root.rchild.height) + 1
    elif root.lchild:
        root.height = root.lchild.height + 1
    elif root.rchild:
        root.height = root.rchild.height + 1
    else:
        root.height = 0

# rotate from left to right with the left-child node as the axis
def rotateL2R(node):
    leftChild = node.lchild
    leftChild.rchild, node.lchild = node, leftChild.rchild
    updateHeight(node)
    updateHeight(leftChild)
    return leftChild

# rotate from right to left with the right-child node as the axis
def rotateR2L(node):
    rightChild = node.rchild
    rightChild.lchild, node.rchild = node, rightChild.lchild
    updateHeight(node)
    updateHeight(rightChild)
    return rightChild

def delete(root, value):
    if not root:
        return None
    if root.value > value:
        root.lchild = delete(root.lchild, value)
    elif root.value < value:
        root.rchild = delete(root.rchild, value)
    else:
        if root.lchild and root.rchild:  # degree of the node is 2
            target = transferDeleteNode(root)
            root = delete(root, target)
            root.value = target
        else:  # degree of the node is [0|1]
            root = root.lchild if root.lchild else root.rchild
    return checkBalance(root)

# find the maximum node or the minimum node in the tree
def transferDeleteNode(node):
    if node.rchild.height > node.lchild.height:
        target = node.rchild
        while target.lchild:
            target = target.lchild
    else:
        target = node.lchild
        while target.rchild:
            target = target.rchild
    return target.value
  • 测试代码与输出
if __name__ == '__main__':
    arr = [5, 3, 4, 0, 2, 1, 8, 6, 9, 7,7]
    T = Tree()
    for i in arr:
        T.insert(i)
    print('BST in-order traversal------------------')
    T.traversal()
    print('\ndelete test------------------')
    for i in arr[::-1]:
        print('after delete', i, end=',BST in-order is = ')
        T.delete(i)
        T.traversal()
        print()
  • 输出结果为:
BST in-order traversal------------------
0 height= 1, 1 height= 0, 2 height= 3, 3 height= 0, 4 height= 1, 5 height= 0, 6 height= 2, 7 height= 0, 8 height= 1, 9 height= 0, 
delete test------------------
after delete 7,BST in-order is = 0 height= 1, 1 height= 0, 2 height= 3, 3 height= 0, 4 height= 1, 5 height= 0, 6 height= 2, 8 height= 1, 9 height= 0, 
after delete 7,BST in-order is = 0 height= 1, 1 height= 0, 2 height= 3, 3 height= 0, 4 height= 1, 5 height= 0, 6 height= 2, 8 height= 1, 9 height= 0, 
after delete 9,BST in-order is = 0 height= 1, 1 height= 0, 2 height= 3, 3 height= 0, 4 height= 1, 5 height= 0, 6 height= 2, 8 height= 0, 
after delete 6,BST in-order is = 0 height= 1, 1 height= 0, 2 height= 3, 3 height= 0, 4 height= 1, 5 height= 2, 8 height= 0, 
after delete 8,BST in-order is = 0 height= 1, 1 height= 0, 2 height= 2, 3 height= 0, 4 height= 1, 5 height= 0, 
after delete 1,BST in-order is = 0 height= 0, 2 height= 2, 3 height= 0, 4 height= 1, 5 height= 0, 
after delete 2,BST in-order is = 0 height= 0, 3 height= 2, 4 height= 1, 5 height= 0, 
after delete 0,BST in-order is = 3 height= 0, 4 height= 1, 5 height= 0, 
after delete 4,BST in-order is = 3 height= 1, 5 height= 0, 
after delete 3,BST in-order is = 5 height= 0, 
after delete 5,BST in-order is = 

github 链接:平衡二叉树

相关文章
|
14天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
57 16
|
14天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
63 8
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
19 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 数据管理
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
这篇文章通过需求分析、代码实现和测试验证,详细介绍了二叉排序树的创建、遍历和删除操作,以及二叉平衡树(AVL)的自平衡特性和单旋转操作,旨在提高树结构在数据管理中的效率和性能。
29 0
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
20 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
27 1
|
1月前
|
算法 Java C语言
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
24 1
|
1月前
|
Java C++
【数据结构】探索红黑树的奥秘:自平衡原理图解及与二叉查找树的比较
本文深入解析红黑树的自平衡原理,介绍其五大原则,并通过图解和代码示例展示其内部机制。同时,对比红黑树与二叉查找树的性能差异,帮助读者更好地理解这两种数据结构的特点和应用场景。
28 0
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆

热门文章

最新文章