TensorFlow 学习指南 四、分布式

简介: 原文:LearningTensorFlow.com译者:飞龙协议:CC BY-NC-SA 4.0自豪地采用谷歌翻译自定义函数Conway 的生命游戏是一个有趣的计算机科学模拟,它在地图上发生,有许多正方形的单元格,就像棋盘一样。

原文:LearningTensorFlow.com

译者:飞龙

协议:CC BY-NC-SA 4.0

自豪地采用谷歌翻译

自定义函数

Conway 的生命游戏是一个有趣的计算机科学模拟,它在地图上发生,有许多正方形的单元格,就像棋盘一样。 模拟以特定的时间步骤进行,并且板上的每个单元可以是 1(生存)或 0(死亡)。 经过特定的时间步骤后,每个单元格都处于生存状态或死亡状态:

  • 如果细胞是活着的,但是有一个或零个邻居,它会由于“人口不足”而“死亡”。
  • 如果细胞存活并且有两个或三个邻居,它就会活着。
  • 如果细胞有三个以上的邻居,它就会因人口过多而死亡。
  • 任何有三个邻居的死细胞都会再生。

虽然这些规则似乎非常病态,但实际的模拟非常简单,创造了非常有趣的模式。 我们将创建一个 TensorFlow 程序来管理 Conway 的生命游戏,并在此过程中了解自定义py_func函数,并生成如下动画:

http://learningtensorflow.com/images/game.mp4

首先,让我们生成地图。 这是非常基本的,因为它只是一个 0 和 1 的矩阵。 我们随机生成初始地图,每次运行时都会提供不同的地图:

import tensorflow as tf
from matplotlib import pyplot as plt

shape = (50, 50)
initial_board = tf.random_uniform(shape, minval=0, maxval=2, dtype=tf.int32)

with tf.Session() as session:
    X = session.run(initial_board)

fig = plt.figure()
plot = plt.imshow(X, cmap='Greys',  interpolation='nearest')
plt.show()

我们生成一个随机选择的 0 和 1 的initial_board,然后运行它来获取值。 然后我们使用matplotlib.pyplot来显示它,使用imshow函数,它基本上只根据一些cmap颜色方案绘制矩阵中的值。 在这种情况下,使用'Greys'会产生黑白矩阵,以及我们生命游戏的单个初始起点:

更新地图的状态

由于生命游戏的地图状态表示为矩阵,因此使用矩阵运算符更新它是有意义的。 这应该提供一种快速方法,更新给定时间点的状态。

非常有才华的 Jake VanderPlas 在使用 SciPy 和 NumPy 更新生命游戏中的特定状态方面做了一些出色的工作。 他的写作值得一读,可以在[这里]找到。 如果你对以下代码的工作原理感兴趣,我建议你阅读 Jake 的说明。 简而言之,convolve2d那行标识每个单元有多少邻居(这是计算机视觉中的常见操作符)。 我稍微更新了代码以减少行数,请参阅下面的更新后的函数:

def update_board(X):
    # Check out the details at: https://jakevdp.github.io/blog/2013/08/07/conways-game-of-life/
    # Compute number of neighbours,
    N = convolve2d(X, np.ones((3, 3)), mode='same', boundary='wrap') - X
    # Apply rules of the game
    X = (N == 3) | (X & (N == 2))
    return X

update_board函数是 NumPy 数组的函数。 它不适用于张量,迄今为止,在 TensorFlow 中没有一种好方法可以做到这一点(虽然你可以使用现有的工具自己编写它,它不是直截了当的)。

在 TensorFlow 的 0.7 版本中,添加了一个新函数py_func,它接受 python 函数并将其转换为 TensorFlow 中的节点。

在撰写本文时(3 月 22 日),0.6 是正式版,并且它没有py_func。 我建议按照 TensorFlow 的 Github 页面上的说明为你的系统安装每晚构建。 例如,对于 Ubuntu 用户,你下载相关的 wheel 文件(python 安装文件)并安装它:

python -m wheel install --force ~/Downloads/tensorflow-0.7.1-cp34-cp34m-linux_x86_64.whl

请记住,你需要正确激活 TensorFlow 源(如果你愿意的话)。

最终结果应该是你安装了 TensorFlow 的 0.7 或更高版本。 你可以通过在终端中运行此代码来检查:

python -c "import tensorflow as tf; print(tf.__version__)"

结果将是版本号,在编写时为 0.7.1。

在代码上:

board = tf.placeholder(tf.int32, shape=shape, name='board')
board_update = tf.py_func(update_board, [board], [tf.int32])

从这里开始,你可以像往常一样,对张量操作节点(即board_update)运行初始地图。 要记住的一点是,运行board_update的结果是一个矩阵列表,即使我们的函数只定义了一个返回值。 我们通过在行尾添加[0]来获取第一个结果,我们更新的地图存储在X中。

with tf.Session() as session:
    initial_board_values = session.run(initial_board)
    X = session.run(board_update, feed_dict={board: initial_board_values})[0]

所得值X是初始配置之后更新的地图。 它看起来很像一个初始随机地图,但我们从未显示初始的(虽然你可以更新代码来绘制两个值)

循环

这是事情变得非常有趣的地方,尽管从 TensorFlow 的角度来看,我们已经为本节做了很多努力。 我们可以使用matplotlib来显示和动画,因此显示时间步骤中的模拟状态,就像我们的原始 GIF 一样。 matplotlib动画的复杂性有点棘手,但是你创建一个更新并返回绘图的函数,并使用该函数调用动画代码:

import matplotlib.animation as animation
def game_of_life(*args):
    X = session.run(board_update, feed_dict={board: X})[0]
    plot.set_array(X)
    return plot,

ani = animation.FuncAnimation(fig, game_of_life, interval=200, blit=True)
plt.show()

提示:你需要从早期代码中删除plt.show()才能运行!

我将把拼图的各个部分作为练习留给读者,但最终结果将是一个窗口出现,游戏状态每 200 毫秒更新一次。

如果你实现了,请给我们发消息!

1)获取完整的代码示例,使用matplotlib和 TensorFlow 生成游戏的动画

2)康威的生命游戏已被广泛研究,并有许多有趣的模式。 创建一个从文件加载模式的函数,并使用它们而不是随机地图。 我建议从 Gosper 的滑翔枪开始。

3)生命游戏的一个问题(特征?)是地图可以重复,导致循环永远不会停止。 编写一些跟踪之前游戏状态的代码,并在游戏状态重复时停止循环。

使用 GPU

GPU(图形处理单元)是大多数现代计算机的组件,旨在执行 3D 图形所需的计算。 它们最常见的用途是为视频游戏执行这些操作,计算多边形向用户显示游戏。 总的来说,GPU 基本上是一大批小型处理器,执行高度并行化的计算。 你现在基本上有了一个迷你超级计算机!

注意:不是真正的超级计算机,但在许多方面有些相似。

虽然 GPU 中的每个“CPU”都很慢,但它们中有很多并且它们专门用于数字处理。 这意味着 GPU 可以同时执行许多简单的数字处理任务。 幸运的是,这正是许多机器学习算法需要做的事情。

没有 GPU 吗?

大多数现代(最近10年)的计算机都有某种形式的 GPU,即使它内置在你的主板上。 出于本教程的目的,这就足够了。

你需要知道你有什么类型的显卡。 Windows 用户可以遵循这些说明,其他系统的用户需要查阅他们系统的文档。

非 N 卡用户

虽然其他显卡可能是受支持的,但本教程仅在最近的 NVidia 显卡上进行测试。 如果你的显卡属于不同类型,我建议你寻找 NVidia 显卡来学习,购买或者借用。 如果这对你来说真的很难,请联系你当地的大学或学校,看看他们是否可以提供帮助。 如果你仍然遇到问题,请随意阅读以及使用标准 CPU 进行操作。 你将能够在以后迁移所学的东西。

安装 GPU 版的 TensorFlow

如果你之前没有安装支持 GPU 的 TensorFlow,那么我们首先需要这样做。我们在第 1 课中没有说明,所以如果你没有按照你的方式启用 GPU 支持,那就是没有了。

我建议你为此创建一个新的 Anaconda 环境,而不是尝试更新以前的环境。

在你开始之前

前往 TensorFlow 官方安装说明,并遵循 Anaconda 安装说明。这与我们在第 1 课中所做的主要区别在于,你需要为你的系统启用支持 GPU 的 TensorFlow 版本。但是,在将 TensorFlow 安装到此环境之前,你需要使用 CUDA 和 CuDNN,将计算机设置为启用 GPU 的。TensorFlow 官方文档逐步概述了这一点,但如果你尝试设置最近的 Ubuntu 安装,我推荐本教程。主要原因是,在撰写本文时(2016 年 7 月),尚未为最新的 Ubuntu 版本构建 CUDA,这意味着该过程更加手动。

使用你的 GPU

真的很简单。 至少是字面上。 只需将这个:

# 起步操作

with tf.Session() as sess:
    # 运行你的代码

改为这个:

with tf.device("/gpu:0"):
    # 起步操作

with tf.Session() as sess:
    # 运行你的代码

这个新行将创建一个新的上下文管理器,告诉 TensorFlow 在 GPU 上执行这些操作。

我们来看一个具体的例子。 下面的代码创建一个随机矩阵,其大小在命令行中提供。 我们可以使用命令行选项在 CPU 或 GPU 上运行代码:

import sys
import numpy as np
import tensorflow as tf
from datetime import datetime

device_name = sys.argv[1]  # Choose device from cmd line. Options: gpu or cpu
shape = (int(sys.argv[2]), int(sys.argv[2]))
if device_name == "gpu":
    device_name = "/gpu:0"
else:
    device_name = "/cpu:0"

with tf.device(device_name):
    random_matrix = tf.random_uniform(shape=shape, minval=0, maxval=1)
    dot_operation = tf.matmul(random_matrix, tf.transpose(random_matrix))
    sum_operation = tf.reduce_sum(dot_operation)


startTime = datetime.now()
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as session:
        result = session.run(sum_operation)
        print(result)

# 很难在终端上看到具有大量输出的结果 - 添加一些换行符以提高可读性。
print("\n" * 5)
print("Shape:", shape, "Device:", device_name)
print("Time taken:", datetime.now() - startTime)

print("\n" * 5)

你可以在命令行运行此命令:

python matmul.py gpu 1500

这将使用 GPU 和大小为 1500 平方的矩阵。 使用以下命令在 CPU 上执行相同的操作:

python matmul.py cpu 1500

与普通的 TensorFlow 脚本相比,在运行支持 GPU 的代码时,你会注意到的第一件事是输出大幅增加。 这是我的计算机在打印出任何操作结果之前打印出来的内容。

I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties: 
name: GeForce GTX 950M
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:01:00.0
Total memory: 3.95GiB
Free memory: 3.50GiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:838] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 950M, pci bus id: 0000:01:00.0)

如果你的代码没有产生与此类似的输出,那么你没有运行支持 GPU 的 Tensorflow。或者,如果你收到ImportError: libcudart.so.7.5: cannot open shared object file: No such file or directory这样的错误,那么你还没有正确安装 CUDA 库。在这种情况下,你需要返回,遵循指南来在你的系统上安装 CUDA。

尝试在 CPU 和 GPU 上运行上面的代码,慢慢增加数量。从 1500 开始,然后尝试 3000,然后是 4500,依此类推。你会发现 CPU 开始需要相当长的时间,而 GPU 在这个操作中真的非常快!

如果你有多个 GPU,则可以使用其中任何一个。 GPU 是从零索引的 - 上面的代码访问第一个 GPU。将设备更改为gpu:1使用第二个 GPU,依此类推。你还可以将部分计算发送到一个 GPU,然后是另一个 GPU。此外,你可以以类似的方式访问计算机的 CPU - 只需使用cpu:0(或其他数字)。

我应该把什么样的操作发送给 GPU?

通常,如果该过程的步骤可以描述,例如“执行该数学运算数千次”,则将其发送到 GPU。 示例包括矩阵乘法和计算矩阵的逆。 实际上,许多基本矩阵运算是 GPU 的拿手好戏。 作为一个过于宽泛和简单的规则,应该在 CPU 上执行其他操作。

更换设备和使用 GPU 还需要付出代价。 GPU 无法直接访问你计算机的其余部分(当然,除了显示器)。 因此,如果你在 GPU 上运行命令,则需要先将所有数据复制到 GPU,然后执行操作,然后将结果复制回计算机的主存。 TensorFlow 在背后处理这个问题,因此代码很简单,但仍需要执行工作。

并非所有操作都可以在 GPU 上完成。 如果你收到以下错误,你正在尝试执行无法在 GPU 上执行的操作:

Cannot assign a device to node ‘PyFunc’: Could not satisfy explicit device specification ‘/device:GPU:1’ because no devices matching that specification are registered in this process;

如果是这种情况,你可以手动将设备更改为 CPU 来执行此函数,或者设置 TensorFlow,以便在这种情况下自动更改设备。 为此,请在配置中设置allow_soft_placementTrue,作为创建会话的一部分。 原型看起来像这样:

with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)):
    # 在这里运行你的图

我还建议在使用 GPU 时记录设备的放置,这样可以轻松调试与不同设备使用情况相关的问题。 这会将设备的使用情况打印到日志中,从而可以查看设备何时更改以及它对图的影响。

with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)):
    # 在这里运行你的图

1)设置你的计算机,将 GPU 用于 TensorFlow(或者如果你最近没有 GPU,就借一台)。

2)尝试在 GPU 上运行以前的练习的解决方案。 哪些操作可以在 GPU 上执行,哪些不可以?

3)构建一个在 GPU 和 CPU 上都使用操作的程序。 使用我们在第 5 课中看到的性能分析代码,来估计向 GPU 发送数据和从 GPU 获取数据的影响。

4)把你的代码发给我! 我很乐意看到你的代码示例,如何使用 Tensorflow,以及你找到的任何技巧。

分布式计算

TensorFlow 支持分布式计算,允许在不同的进程上计算图的部分,这些进程可能位于完全不同的服务器上! 此外,这可用于将计算分发到具有强大 GPU 的服务器,并在具有更多内存的服务器上完成其他计算,依此类推。 虽然接口有点棘手,所以让我们从头开始构建。

这是我们的第一个脚本,我们将在单个进程上运行,然后转移到多个进程。

import tensorflow as tf

x = tf.constant(2)
y1 = x + 300
y2 = x - 66
y = y1 + y2

with tf.Session() as sess:
    result = sess.run(y)
    print(result)

到现在为止,这个脚本不应该特别吓到你。 我们有一个常数和三个基本方程。 结果(238)最后打印出来。

TensorFlow 有点像服务器 - 客户端模型。 这个想法是你创造了一大堆能够完成繁重任务的工作器。 然后,你可以在其中一个工作器上创建会话,它将计算图,可能将其中的一部分分发到服务器上的其他集群。

为此,主工作器,主机,需要了解其他工作器。 这是通过创建ClusterSpec来完成的,你需要将其传递给所有工作器。 ClusterSpec使用字典构建,其中键是“作业名称”,每个任务包含许多工作器。

下面是这个图表看上去的样子。

以下代码创建一个ClusterSpect,其作业名称为local,和两个工作器进程。

请注意,这些代码不会启动这些进程,只会创建一个将启动它们的引用。

import tensorflow as tf

cluster = tf.train.ClusterSpec({"local": ["localhost:2222", "localhost:2223"]})

接下来,我们启动进程。 为此,我们绘制其中一个工作器的图,并启动它:

server = tf.train.Server(cluster, job_name="local", task_index=1)

上面的代码在local作业下启动localhost:2223工作器。

下面是一个脚本,你可以从命令行运行来启动这两个进程。 将代码在你的计算机上保存为create_worker.py并运行python create_worker.py 0然后运行python create_worker.py 1。你需要单独的终端来执行此操作,因为脚本不会自己停止(他们正在等待指令)。

# 从命令行获取任务编号
import sys
task_number = int(sys.argv[1])

import tensorflow as tf

cluster = tf.train.ClusterSpec({"local": ["localhost:2222", "localhost:2223"]})
server = tf.train.Server(cluster, job_name="local", task_index=task_number)

print("Starting server #{}".format(task_number))

server.start()
server.join()

执行此操作后,你将发现服务器运行在两个终端上。 我们准备分发!

“分发”作业的最简单方法是在其中一个进程上创建一个会话,然后在那里执行图。 只需将上面的session行更改为:

with tf.Session("grpc://localhost:2222") as sess:

现在,这并没有真正分发,不足以将作业发送到该服务器。 TensorFlow 可以将进程分发到集群中的其他资源,但可能不会。 我们可以通过指定设备来强制执行此操作(就像我们在上一课中对 GPU 所做的那样):

import tensorflow as tf


cluster = tf.train.ClusterSpec({"local": ["localhost:2222", "localhost:2223"]})

x = tf.constant(2)


with tf.device("/job:local/task:1"):
    y2 = x - 66

with tf.device("/job:local/task:0"):
    y1 = x + 300
    y = y1 + y2


with tf.Session("grpc://localhost:2222") as sess:
    result = sess.run(y)
    print(result)

现在我们正在分发! 这可以通过根据名称和任务编号,为工作器分配任务来实现。 格式为:

/job:JOB_NAME/task:TASK_NUMBER

通过多个作业(即识别具有大型 GPU 的计算机),我们可以以多种不同方式分发进程。

映射和归约

MapReduce 是执行大型操作的流行范式。 它由两个主要步骤组成(虽然在实践中还有一些步骤)。

第一步称为映射,意思是“获取列表,并将函数应用于每个元素”。 你可以在普通的 python 中执行这样的映射:

def myfunction(x):
    return x + 5
    
map_result = map(myfunction, [1, 2, 3])

print(list(map_result))

第二步是归约,这意味着“获取列表,并使用函数将它们组合”。 常见的归约操作是求和 - 即“获取数字列表并通过将它们全部加起来组合它们”,这可以通过创建相加两个数字的函数来执行。 reduce的原理是获取列表的前两个值,执行函数,获取结果,然后使用结果和下一个值执行函数。 总之,我们将前两个数字相加,取结果,加上下一个数字,依此类推,直到我们到达列表的末尾。 同样,reduce是普通 python 的一部分(尽管它不是分布式的):

from functools import reduce

def add(a, b):
    return a + b

print(reduce(add, [1, 2, 3]))

译者注:原作者这里的话并不值得推荐,比如for你更应该使用reduce,因为它更安全。

回到分布式 TensorFlow,执行mapreduce操作是许多非平凡程序的关键构建块。 例如,集成学习可以将单独的机器学习模型发送给多个工作器,然后组合分类结果来形成最终结果。另一个例子是一个进程。

这是我们将分发的另一个基本脚本:

import numpy as np
import tensorflow as tf

x = tf.placeholder(tf.float32, 100)

mean = tf.reduce_mean(x)


with tf.Session() as sess:
    result = sess.run(mean, feed_dict={x: np.random.random(100)})
    print(result)

import numpy as np
import tensorflow as tf

x = tf.placeholder(tf.float32, 100)

mean = tf.reduce_mean(x)


with tf.Session() as sess:
    result = sess.run(mean, feed_dict={x: np.random.random(100)})
    print(result)

转换为分布式版本只是对先前转换的更改:

import numpy as np
import tensorflow as tf

cluster = tf.train.ClusterSpec({"local": ["localhost:2222", "localhost:2223"]})

x = tf.placeholder(tf.float32, 100)


with tf.device("/job:local/task:1"):
    first_batch = tf.slice(x, [0], [50])
    mean1 = tf.reduce_mean(first_batch)

with tf.device("/job:local/task:0"):
    second_batch = tf.slice(x, [50], [-1])
    mean2 = tf.reduce_mean(second_batch)
    mean = (mean1 + mean2) / 2


with tf.Session("grpc://localhost:2222") as sess:
    result = sess.run(mean, feed_dict={x: np.random.random(100)})
    print(result)

如果你从映射和归约的角度来考虑它,你会发现分发计算更容易。 首先,“我怎样才能将这个问题分解成可以独立解决的子问题?” - 这就是你的映射。 第二,“我如何将答案结合起来来形成最终结果?” - 这就是你的归约。

在机器学习中,映射最常用的场景就是分割数据集。 线性模型和神经网络通常都非常合适,因为它们可以单独训练,然后再进行组合。

1)将ClusterSpec中的local更改为其他内容。 你还需要在脚本中进行哪些更改才能使其正常工作?

2)计算平均的脚本目前依赖于切片大小相同的事实。 尝试使用不同大小的切片并观察错误。 通过使用tf.size和以下公式来组合切片的平均值来解决此问题:

overall_average = ((size_slice_1 * mean_slice_1) + (size_slice_2 * mean_slice_2) + ...) / total_size 

3)你可以通过修改设备字符串来指定远程计算机上的设备。 例如,/job:local/task:0/gpu:0会定位local作业的 GPU。 创建一个使用远程 GPU 的作业。 如果你有备用的第二台计算机,请尝试通过网络执行此操作。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
8月前
|
SQL 关系型数据库 数据库
学习分布式事务Seata看这一篇就够了,建议收藏
学习分布式事务Seata看这一篇就够了,建议收藏
|
8月前
|
消息中间件 Dubbo 应用服务中间件
分布式事物【Hmily实现TCC分布式事务、Hmily实现TCC事务、最终一致性分布式事务解决方案】(七)-全面详解(学习总结---从入门到深化)
分布式事物【Hmily实现TCC分布式事务、Hmily实现TCC事务、最终一致性分布式事务解决方案】(七)-全面详解(学习总结---从入门到深化)
222 0
|
7月前
|
机器学习/深度学习 分布式计算 算法
联邦学习是保障数据隐私的分布式机器学习方法
【6月更文挑战第13天】联邦学习是保障数据隐私的分布式机器学习方法,它在不暴露数据的情况下,通过在各设备上本地训练并由中心服务器协调,实现全局模型构建。联邦学习的优势在于保护隐私、提高训练效率和增强模型泛化。已应用于医疗、金融和物联网等领域。未来趋势包括更高效的数据隐私保护、提升可解释性和可靠性,以及与其他技术融合,有望在更多场景发挥潜力,推动机器学习发展。
142 4
|
7月前
|
消息中间件 NoSQL Java
Redis系列学习文章分享---第六篇(Redis实战篇--Redis分布式锁+实现思路+误删问题+原子性+lua脚本+Redisson功能介绍+可重入锁+WatchDog机制+multiLock)
Redis系列学习文章分享---第六篇(Redis实战篇--Redis分布式锁+实现思路+误删问题+原子性+lua脚本+Redisson功能介绍+可重入锁+WatchDog机制+multiLock)
272 0
|
4月前
|
机器学习/深度学习 算法 自动驾驶
深度学习之分布式智能体学习
基于深度学习的分布式智能体学习是一种针对多智能体系统的机器学习方法,旨在通过多个智能体协作、分布式决策和学习来解决复杂任务。这种方法特别适用于具有大规模数据、分散计算资源、或需要智能体彼此交互的应用场景。
247 4
|
5月前
|
C# 开发者 前端开发
揭秘混合开发新趋势:Uno Platform携手Blazor,教你一步到位实现跨平台应用,代码复用不再是梦!
【8月更文挑战第31天】随着前端技术的发展,混合开发日益受到开发者青睐。本文详述了如何结合.NET生态下的两大框架——Uno Platform与Blazor,进行高效混合开发。Uno Platform基于WebAssembly和WebGL技术,支持跨平台应用构建;Blazor则让C#成为可能的前端开发语言,实现了客户端与服务器端逻辑共享。二者结合不仅提升了代码复用率与跨平台能力,还简化了项目维护并增强了Web应用性能。文中提供了从环境搭建到示例代码的具体步骤,并展示了如何创建一个简单的计数器应用,帮助读者快速上手混合开发。
140 0
|
5月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
132 0
|
6月前
|
机器学习/深度学习 存储 TensorFlow
分布式TensorFlow
【7月更文挑战第21天】分布式TensorFlow。
44 1
|
8月前
|
Java 数据库连接 API
分布式事物【XA强一致性分布式事务实战、Seata提供XA模式实现分布式事务】(五)-全面详解(学习总结---从入门到深化)
分布式事物【XA强一致性分布式事务实战、Seata提供XA模式实现分布式事务】(五)-全面详解(学习总结---从入门到深化)
158 0
|
6月前
|
机器学习/深度学习 存储 TensorFlow
分布式TensorFlow
【7月更文挑战第3天】分布式TensorFlow。
31 1