空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)

简介: 想直接看公式的可跳至第三节 3.公式修正一、为什么需要SPP首先需要知道为什么会需要SPP。我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对数据大小有要求的则是第一个全连接层,因此基本上所有的CNN都要求输入数据固定大小,例如著名的VGG模型则要求输入数据大小是 (224*224) 。

想直接看公式的可跳至第三节 3.公式修正

一、为什么需要SPP

首先需要知道为什么会需要SPP。

我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对数据大小有要求的则是第一个全连接层,因此基本上所有的CNN都要求输入数据固定大小,例如著名的VGG模型则要求输入数据大小是 (224*224)

固定输入数据大小有两个问题:

1.很多场景所得到数据并不是固定大小的,例如街景文字基本上其高宽比是不固定的,如下图示红色框出的文字。

img_7820ba0b736f31918f33024d4b838b14.png img_f43ff447d32978ce64a2be276d690544.png


2.可能你会说可以对图片进行切割,但是切割的话很可能会丢失到重要信息。

综上,SPP的提出就是为了解决CNN输入图像大小必须固定的问题,从而可以使得输入图像高宽比和大小任意。

二、SPP原理

更加具体的原理可查阅原论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

img_1575b9c9d4e6ebd97575953e1d97f1e7.png



上图是原文中给出的示意图,需要从下往上看:

  • 首先是输入层(input image),其大小可以是任意的
  • 进行卷积运算,到最后一个卷积层(图中是\(conv_5\))输出得到该层的特征映射(feature maps),其大小也是任意的
  • 下面进入SPP层
    • 我们先看最左边有16个蓝色小格子的图,它的意思是将从\(conv_5\)得到的特征映射分成16份,另外16X256中的256表示的是channel,即SPP对每一层都分成16份(不一定是等比分,原因看后面的内容就能理解了)。
    • 中间的4个绿色小格子和右边1个紫色大格子也同理,即将特征映射分别分成4X2561X256

那么将特征映射分成若干等分是做什么用的呢? 我们看SPP的名字就是到了,是做池化操作,一般选择MAX Pooling,即对每一份进行最大池化。

我们看上图,通过SPP层,特征映射被转化成了16X256+4X256+1X256 = 21X256的矩阵,在送入全连接时可以扩展成一维矩阵,即1X10752,所以第一个全连接层的参数就可以设置成10752了,这样也就解决了输入数据大小任意的问题了。

注意上面划分成多少份是可以自己是情况设置的,例如我们也可以设置成3X3等,但一般建议还是按照论文中说的的进行划分。

三、SPP公式

理论应该理解了,那么如何实现呢?下面将介绍论文中给出的计算公式,但是在这之前先要介绍两种计算符号以及池化后矩阵大小的计算公式:

1.预先知识

取整符号:

  • ⌊⌋:向下取整符号 ⌊59/60⌋=0,有时也用 floor() 表示

  • ⌈⌉:向上取整符号 ⌈59/60⌉=1, 有时也用ceil() 表示

池化后矩阵大小计算公式:

  • 没有步长(Stride):\((h+2p-f+1)*(w+2p-f+1)\)
  • 有步长(Stride):⌊\(\frac{h+2p-f}{s}\)+1⌋*⌊\(\frac{w+2p-f}{s}\)+1⌋

2.公式

假设

  • 输入数据大小是\((c, h_{in}, w_{in})\),分别表示通道数,高度,宽度
  • 池化数量:\((n,n)\)

那么则有

  • 核(Kernel)大小: \(⌈\frac{h_{in}}{n},\frac{w_{in}}{n}⌉=ceil(\frac{h_{in}}{n},\frac{w_{in}}{n})\)
  • 步长(Stride)大小: \(⌊\frac{h_{in}}{n},\frac{w_{in}}{n}⌋=floor(\frac{h_{in}}{n},\frac{w_{in}}{n})\)

我们可以验证一下,假设输入数据大小是\((10, 7, 11)\), 池化数量\((2, 2)\):

那么核大小为\((4,6)\), 步长大小为\((3,5)\), 得到池化后的矩阵大小的确是\(2*2\)

3.公式修正

是的,论文中给出的公式的确有些疏漏,我们还是以举例子的方式来说明

假设输入数据大小和上面一样是\((10, 7, 11)\), 但是池化数量改为\((4,4)\)

此时核大小为\((2,3)\), 步长大小为\((1,2)\),得到池化后的矩阵大小的确是\(6*5\) ←[简单的计算矩阵大小的方法:(7=2+1*5, 11=3+2*4)],而不是\(4*4\)

那么问题出在哪呢?

我们忽略了padding的存在(我在原论文中没有看到关于padding的计算公式,如果有的话。。。那就是我看走眼了,麻烦提示我一下在哪个位置写过,谢谢)。

仔细看前面的计算公式我们很容易发现并没有给出padding的公式,在经过N次使用SPP计算得到的结果与预期不一样以及查找各种网上资料(尽管少得可怜)后,现将加入padding后的计算公式总结如下。

\(K_h = ⌈\frac{h_{in}}{n}⌉=ceil(\frac{h_{in}}{n})\)
\(S_h = ⌈\frac{h_{in}}{n}⌉=ceil(\frac{h_{in}}{n})\)
\(p_h = ⌊\frac{k_h*n-h_{in}+1}{2}⌋=floor(\frac{k_h*n-h_{in}+1}{2})\)
\(h_{new} = 2*p_h +h_{in}\)


\(K_w = ⌈\frac{w_{in}}{n}⌉=ceil(\frac{w_{in}}{n})\)
\(S_w = ⌈\frac{w_{in}}{n}⌉=ceil(\frac{w_{in}}{n})\)
\(p_w = ⌊\frac{k_w*n-w_{in}+1}{2}⌋=floor(\frac{k_w*n-w_{in}+1}{2})\)
\(w_{new} = 2*p_w +w_{in}\)

  • \(k_h\): 表示核的高度
  • \(S_h\): 表示高度方向的步长
  • \(p_h\): 表示高度方向的填充数量,需要乘以2

注意核和步长的计算公式都使用的是ceil(),即向上取整,而padding使用的是floor(),即向下取整

现在再来检验一下:
假设输入数据大小和上面一样是\((10, 7, 11)\), 池化数量为\((4,4)\)

Kernel大小为\((2,3)\),Stride大小为\((2,3)\),所以Padding为\((1,1)\)

利用矩阵大小计算公式:⌊\(\frac{h+2p-f}{s}\)+1⌋*⌊\(\frac{w+2p-f}{s}\)+1⌋得到池化后的矩阵大小为:\(4*4\)

四、代码实现(Python)

这里我使用的是PyTorch深度学习框架,构建了一个SPP层,代码如下:

#coding=utf-8

import math
import torch
import torch.nn.functional as F

# 构建SPP层(空间金字塔池化层)
class SPPLayer(torch.nn.Module):

    def __init__(self, num_levels, pool_type='max_pool'):
        super(SPPLayer, self).__init__()

        self.num_levels = num_levels
        self.pool_type = pool_type

    def forward(self, x):
        num, c, h, w = x.size() # num:样本数量 c:通道数 h:高 w:宽
        for i in range(self.num_levels):
            level = i+1
            kernel_size = (math.ceil(h / level), math.ceil(w / level))
            stride = (math.ceil(h / level), math.ceil(w / level))
            pooling = (math.floor((kernel_size[0]*level-h+1)/2), math.floor((kernel_size[1]*level-w+1)/2))

            # 选择池化方式 
            if self.pool_type == 'max_pool':
                tensor = F.max_pool2d(x, kernel_size=kernel_size, stride=stride, padding=pooling).view(num, -1)
            else:
                tensor = F.avg_pool2d(x, kernel_size=kernel_size, stride=stride, padding=pooling).view(num, -1)

            # 展开、拼接
            if (i == 0):
                x_flatten = tensor.view(num, -1)
            else:
                x_flatten = torch.cat((x_flatten, tensor.view(num, -1)), 1)
        return x_flatten

上述代码参考: sppnet-pytorch

为防止原作者将代码删除,我已经Fork了,也可以通过如下地址访问代码:
marsggbo/sppnet-pytorch



MARSGGBO原创





2018-3-15



目录
相关文章
|
7月前
|
机器学习/深度学习 关系型数据库 MySQL
大模型中常用的注意力机制GQA详解以及Pytorch代码实现
GQA是一种结合MQA和MHA优点的注意力机制,旨在保持MQA的速度并提供MHA的精度。它将查询头分成组,每组共享键和值。通过Pytorch和einops库,可以简洁实现这一概念。GQA在保持高效性的同时接近MHA的性能,是高负载系统优化的有力工具。相关论文和非官方Pytorch实现可进一步探究。
861 4
|
1月前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
139 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
106 10
|
24天前
|
监控 PyTorch 数据处理
通过pin_memory 优化 PyTorch 数据加载和传输:工作原理、使用场景与性能分析
在 PyTorch 中,`pin_memory` 是一个重要的设置,可以显著提高 CPU 与 GPU 之间的数据传输速度。当 `pin_memory=True` 时,数据会被固定在 CPU 的 RAM 中,从而加快传输到 GPU 的速度。这对于处理大规模数据集、实时推理和多 GPU 训练等任务尤为重要。本文详细探讨了 `pin_memory` 的作用、工作原理及最佳实践,帮助你优化数据加载和传输,提升模型性能。
54 4
通过pin_memory 优化 PyTorch 数据加载和传输:工作原理、使用场景与性能分析
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。
36 0
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
|
5月前
|
机器学习/深度学习 PyTorch 编译器
Pytorch的编译新特性TorchDynamo的工作原理和使用示例
PyTorch的TorchDynamo是一个即时编译器,用于优化动态图执行,提高运行效率。它在运行时分析和转换代码,应用优化技术,如操作符融合,然后编译成高效机器码。通过一个包含特征工程、超参数调整、交叉验证的合成数据集示例,展示了TorchDynamo如何减少训练时间并提高模型性能。它易于集成,只需对现有PyTorch代码进行小改动,即可利用其性能提升。TorchDynamo的优化包括动态捕获计算图、应用优化和编译,适用于实时应用和需要快速响应的场景。
77 11
|
5月前
|
资源调度 PyTorch 调度
多任务高斯过程数学原理和Pytorch实现示例
本文探讨了如何使用高斯过程扩展到多任务场景,强调了多任务高斯过程(MTGP)在处理相关输出时的优势。通过独立多任务GP、内在模型(ICM)和线性模型(LMC)的核心区域化方法,MTGP能够捕捉任务间的依赖关系,提高泛化能力。ICM和LMC通过引入核心区域化矩阵来学习任务间的共享结构。在PyTorch中,使用GPyTorch库展示了如何实现ICM模型,包括噪声建模和训练过程。实验比较了MTGP与独立GP,显示了MTGP在预测性能上的提升。
90 7
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。