Unity3d面向英特尔® x86 平台的 Unity* 优化指南: 第 3 部分

简介: 目录编辑器优化遮挡剔除LOD:细节级别阴影使用一个摄像头渲染队列排序光照贴图针对复杂模型,使用简单的碰撞器代替网格碰撞器返回至第 2 部分教程:面向英特尔® x86 平台的 Unity* 优化指南: 第 2 部分编辑器优化遮挡剔除遮挡剔除是 Unity 的一种特性,可帮助您剔除被摄像头可视范围内其他物体遮挡的物体。

目录

编辑器优化

遮挡剔除

LOD:细节级别

阴影

使用一个摄像头

渲染队列排序

光照贴图

针对复杂模型,使用简单的碰撞器代替网格碰撞器

返回至第 2 部分教程:

面向英特尔® x86 平台的 Unity* 优化指南: 第 2 部分

编辑器优化

遮挡剔除

遮挡剔除是 Unity 的一种特性,可帮助您剔除被摄像头可视范围内其他物体遮挡的物体。我们以奇幻 MMORPG

为例来做简单说明。如果玩家前往一座具有延绵大城的巨大城堡,那么您真的希望将系统资源用于渲染城墙内所有被遮挡住的商店/玩家吗?答案是否定的。遮挡剔

除可帮您解决这个问题(图 21)。

图 24.遮挡说明

遮挡剔除可通过整体减少绘制调用的发送来缓解 GPU 的处理压力(如果遮挡剔除计算可相比保存驱动程序调用花费更少的时间,则可能还会减轻 CPU 负载)。 在设置遮挡剔除时,了解 Unity 使用的一些术语会比较有帮助,因为这可以帮助您设置执行剔除的场景。

遮挡物 (Occluder) – 充当屏障的任何物体,可防止对可视范围内被遮挡的物体(被遮挡物)进行渲染。

被遮挡物 (Occludee) - 由于被遮挡物遮挡而无法被渲染到屏幕上的任何物体。

您碰到的大部分物体都有可能会成为被遮挡物或遮挡物,具体取决于摄像头方向和游戏边界。比较值得推荐的做法是,通览全部场景,选择多个应

该包含在遮挡剔除计算中的物体,并将其标记为“静态遮挡物 (Occluder Static)”或“静态被遮挡物 (Occludee

Static)”。

图 25.如何在检视面板中设置遮挡物和被遮挡物

增加遮挡剔除流程的最后一步是烘培场景。

这可通过打开遮挡剔除窗口(位置:Window>Occlusion Culling)来完成。 您将会看到一个如图 20

所示的窗口,其中具有从较高性能 / 较低准确率到较低准确率 / 较高性能的各种不同的调整技巧。 您应该在您的应用中使用“最低有效量”技巧。

图 26.遮挡窗口和调整按钮

设置完遮挡剔除系统之后,请认真设置您的遮挡区域。在默认情况下,Unity 将整个场景作为遮挡区域,这可导致没有意义的计算。 为确保不使用整个场景,需手动创建遮挡区域,并环绕仅包含在计算中的区域。

Unity 可支持您形象地看到遮挡剔除系统中的每一部分。 要想查看您的相机卷、可见性线和门户,则只需打开遮挡剔除窗口 (Window

> Occlusion Culling) 并点击 Visualization 选项卡便可。

这样您便可形象地看到场景视图中的所有这些要素了。

图 27.场景视图中的遮挡剔除可视化图

img_57ae41fa32d6b2877602e23919985e34.png

更多信息请访问:http://docs.unity3d.com/Manual/class-OcclusionArea.html

LOD:细节级别

细节级别 (LOD) 组件可支持游戏对象在不同的细节级别上转换网格,具体取决于物体与摄像头的距离。 LOD

特性可帮助显著降低一个帧对内存的要求,同时几乎不会对视觉逼真度产生影响。 通过在较低的 LOD 级别上提供较少的几何图形,调整 LOD

可缓解输入装配器和顶点着色器的压力。

您可以通过查看 Unity 分析器来确认 LOD 特性是否已启用。 具体方式为:打开“CPU 使用”分析器,并向下导航至 Camera.Render > Drawing > Culling,然后检查是否显示 “LOD.ComputeLOD”。

图 28.在 Unity 分析器中核实 LOD 的使用

您还可以使用 GPA 捕捉一个帧,选择模型相应的绘制调用,然后点击 Geometry

选项卡,进而验证是否启用正确的模型。您将能够借此清晰地看到提交的实际模型的几何图形以及其他有用的统计数据(如顶点数)。您可以验证顶点数是否与在摄

像头捕捉距离内使用的理想模型相一致。

细节级别通常取决于顶点。 如果每个顶点需要过多的计算的话,则会阻碍其性能。使用移动版 Unity 着色器可显著减少每个顶点所需的计算。 如果物体偏小或偏远,则可在不需要这些细节时限制 LODGroup 中的顶点数。

图 29.要想为游戏对象添加 LOD 组件,则需点击 Component->Rendering->LOD Group

图 30.在 LOD Group 中调整

图 31.高质量

图 32.低质量

阴影

阴影能够占用大量的 GPU 性能。要想了解阴影所占用的系统资源量,请查看 Profiler > GPU > Shadows

部分。您可以通过多种优化方式来最大限度地提高阴影性能,具体取决于您的场景布局。例如,如果大部分场景阴影因平行光而起,则缩短阴影距离(设置路

径:Project Settings > Quality)可显著提升阴影性能。 阴影距离大多与片段着色器的性能紧密相关。在 GPA

帧捕捉中,您可以选择一个从阴影贴图中采样的绘制调用,然后查看片段着色器执行单元的停止/激活指标和采样器的读取/写入指标。阴影距离值可在代码中动态

设置。 对于点光灯来说,调整阴影分辨率有助于降低内存带宽开销,因为这在移动网络上成本非常之高。

以下简要介绍了 Project Settings > Quality 提供的每种阴影选项(更多信息请参考《Unity 质量设置指南》):

阴影过滤– 用于过滤阴影的一种方法

硬阴影 - 当从阴影贴图中采样时,Unity 会选择距离最近的阴影贴图像素

软阴影 - 取几个阴影贴图像素的平均值,创建更平滑的阴影。 这种方法成本更高,但是可以打造更自然的阴影

阴影分辨率– 生成的阴影贴图的分辨率

如果使用多个点光灯/聚光灯,则会显著影响其性能

阴影投射– 用于投射阴影的一种方法

稳定 - 渲染分辨率较低的阴影,摄像头移动时不会引起颤动

紧密配合 - 渲染分辨率较高的阴影贴图,摄像头移动时可轻微颤动

阴影级联– 在级联阴影贴图中使用的平行碎片的数量(距离观者越近的级联分辨率越高,以便提升质量)

可严重影响平行光的性能

图 33.未启用任何阴影级联

图 34.启用四个阴影级联

阴影距离– 距离投射阴影的物体的最大距离

如果使用平行光,则会严重影响片段着色器的性能

可通过脚本动态更改

性能结果将会有所变化,因为 GPU 的使用取决于场景以及投射/接收阴影的物体数量。 而有一点始终至关重要,即应该使用所需的最低质量设置来获得理想的外观。 通常建议将默认的阴影距离更改至一个较低的值。

图 35.Unity Bootcamp 演示中基于阴影距离的 FPS。

要想查看 Unity 生成的阴影贴图,您可以捕捉场景的其中一帧,然后在 GPA 帧分析器中进行查看。 前往最终的渲染目标,并导航至 Textures 选项卡查看阴影贴图。

图 36.生成的级联阴影贴图在 GPA 帧分析器中的视图

坚持使用一个摄像头

有时候为了达成某些特定的效果,使用多个摄像头也能够理解。例如,如果您想创造视差效应,那么其中一种方法便是使用以不同速率移动的多个摄像头。

但您可能没意识到的是,每个摄像头都需要一组独立的 Clear 调用来连接显卡 API 和新渲染目标。如果使用 3 个摄像头和一个 UI

摄像头(canvas 物体需要一个额外的摄像头)从简单场景中捕获其中一帧,则仅 Clear 就会占据 5.4% 的场景。

图 37.与 4 个摄像头拍摄所得的某一场景相关的绘制调用时间表。红色中的色彩 / 深度 / 模板清除循环。

渲染队列排序

图形编程中有一个概念叫做过度绘制,是指一个像素被不必要地绘制了多次,从而导致显卡资源浪费。 Unity 提供了一种方法来确定不同模型的渲染顺序,即渲染队列属性。渲染队列属性是一个可通过网格渲染器材质进行设置的数值。

为了解该特性的优势,我们来绘制一个上面具有大量物体的地面。 首先对地面进行渲染,确保半个屏幕上的每个像素点都有涉及。 接下来所有物体都将在这个地面上进行渲染。 这产生了许多不必要的工作。 在这个例子中,与任何物体接触的任何像素都被绘制了两次。

图 38.通过可切换的渲染队列排序方法(默认或智能)所获得的正常场景。

图 39.在默认的渲染队列排序模式下使用 GPA 系统分析器时,同一场景的过度绘制可视化图。灰色区域表示过度绘制。 注意,之前所示屏幕截图中的地面在形成绿色漂浮方形区之前进行了绘制。

图 40.在智能渲染队列排序模式使用 GPA 系统分析器时,同一场景的过度绘制可视化图。灰色区域表示过度绘制。注意,唯一过度绘制的部分是超出地面方形区的绿色漂浮方形区。通过认真地手动排列问题绘制调用顺序,您可以避免大量的像素计算。

光照贴图

光照贴图是指针对场景中的物体,首次将所有场景灯光烘培到一个从着色器中采样的光照贴图(带有预计算灯光数据的纹理),而非在着色器中动态计算灯光

值。在内存带宽 / 采样器的使用都不会成为阻碍的情况下,这种方法可显著提升性能。Unity 可支持您通过这种方式将灯光烘培到场景中。

Unity 还支持您通过使用灯光探测器为动态物体生成烘培的灯光数据。 灯光探测器是您放在场景中的点,可对周围的灯光和阴影条件进行采样。 当一个动态物体经过受灯光探测器限制的区域时,则会对这些灯光探测器产生的数据进行采样。 经过的物体所使用的灯光/阴影值可在所有周围探测器之间进行插值替换。 放在场景周围的探测器能够形成一个三维体,并在动态物体可能覆盖的区域周围更加密集地分散开来。

图 41.左侧:Unity 生成的平行光照贴图。右侧:Unity 生成的密集光照贴图。(如 GPA 帧分析器所示。)

为烘培灯光数据,请在检视面板(“遮挡剔除”部分所提及的检查框)中将所有静态几何图形标记为静态,并将灯光探测器放在场景周围,形成一个三维体以

覆盖即将接收灯光数据的动态物体的所有潜在路线。 物体标记完成并且灯光探测器到位以后,通过 Wndow->Lighting

打开光照贴图窗口,并点击 “Bake Scene” 按钮。

图 42.通过光照贴图烘培场景

您将会在窗口右下方看到一个小型加载进度条。烘培完成之后,便大告成功了!您可以移除/禁用场景中不需要的所有动态灯光,但如果您在检视面板中将灯

光标记为“烘培”的话,就不必费此一举了。烘培的灯光将会自动加以应用。跟踪场景中烘培灯光的一种简单方法便是将其全部置于一个空白游戏对象下,以便在需

要重新烘培时快速激活/停用。如果您选择这种方式,则请确认您的光照贴图烘培工作流模式未设置为自动模式。

针对复杂模型,使用简单的碰撞器代替网格碰撞器

对于可碰撞的复杂物体来说,使用原型碰撞器组合非常重要,而不是简单地将网格碰撞器投掷在一切之上。 原型碰撞器是一个简单的三维体(容器、球体、盒装等),而网格碰撞器是您试图启用碰撞的网格。 如果可能的话,请选择原型碰撞器,而非网格碰撞器。

图 43.三个原型碰撞器用于这种大型结构。其性能远超网格碰撞器。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
图形学 iOS开发 Android开发
从Unity开发到移动平台制胜攻略:全面解析iOS与Android应用发布流程,助你轻松掌握跨平台发布技巧,打造爆款手游不是梦——性能优化、广告集成与内购设置全包含
【8月更文挑战第31天】本书详细介绍了如何在Unity中设置项目以适应移动设备,涵盖性能优化、集成广告及内购功能等关键步骤。通过具体示例和代码片段,指导读者完成iOS和Android应用的打包与发布,确保应用顺利上线并获得成功。无论是性能调整还是平台特定的操作,本书均提供了全面的解决方案。
146 0
|
3月前
|
开发者 图形学 API
从零起步,深度揭秘:运用Unity引擎及网络编程技术,一步步搭建属于你的实时多人在线对战游戏平台——详尽指南与实战代码解析,带你轻松掌握网络化游戏开发的核心要领与最佳实践路径
【8月更文挑战第31天】构建实时多人对战平台是技术与创意的结合。本文使用成熟的Unity游戏开发引擎,从零开始指导读者搭建简单的实时对战平台。内容涵盖网络架构设计、Unity网络API应用及客户端与服务器通信。首先,创建新项目并选择适合多人游戏的模板,使用推荐的网络传输层。接着,定义基本玩法,如2D多人射击游戏,创建角色预制件并添加Rigidbody2D组件。然后,引入网络身份组件以同步对象状态。通过示例代码展示玩家控制逻辑,包括移动和发射子弹功能。最后,设置服务器端逻辑,处理客户端连接和断开。本文帮助读者掌握构建Unity多人对战平台的核心知识,为进一步开发打下基础。
111 0
|
3月前
|
开发者 图形学 iOS开发
掌握Unity的跨平台部署与发布秘籍,让你的游戏作品在多个平台上大放异彩——从基础设置到高级优化,深入解析一站式游戏开发解决方案的每一个细节,带你领略高效发布流程的魅力所在
【8月更文挑战第31天】跨平台游戏开发是当今游戏产业的热点,尤其在移动设备普及的背景下更为重要。作为领先的游戏开发引擎,Unity以其卓越的跨平台支持能力脱颖而出,能够将游戏轻松部署至iOS、Android、PC、Mac、Web及游戏主机等多个平台。本文通过杂文形式探讨Unity在各平台的部署与发布策略,并提供具体实例,涵盖项目设置、性能优化、打包流程及发布前准备等关键环节,助力开发者充分利用Unity的强大功能,实现多平台游戏开发。
94 0
|
3月前
|
开发者 图形学 UED
深度解析Unity游戏开发中的性能瓶颈与优化方案:从资源管理到代码执行,全方位提升你的游戏流畅度,让玩家体验飞跃性的顺滑——不止是技巧,更是艺术的追求
【8月更文挑战第31天】《Unity性能优化实战:让你的游戏流畅如飞》详细介绍了Unity游戏性能优化的关键技巧,涵盖资源管理、代码优化、场景管理和内存管理等方面。通过具体示例,如纹理打包、异步加载、协程使用及LOD技术,帮助开发者打造高效流畅的游戏体验。文中提供了实用代码片段,助力减少内存消耗、提升渲染效率,确保游戏运行丝滑顺畅。性能优化是一个持续过程,需不断测试调整以达最佳效果。
90 0
|
3月前
|
Apache 图形学
WebGL☀️Unity WebGL适配到各平台的教程
WebGL☀️Unity WebGL适配到各平台的教程
|
3月前
|
C# 图形学 C语言
Unity3D学习笔记3——Unity Shader的初步使用
Unity3D学习笔记3——Unity Shader的初步使用
44 0
|
3月前
|
图形学 C#
超实用!深度解析Unity引擎,手把手教你从零开始构建精美的2D平面冒险游戏,涵盖资源导入、角色控制与动画、碰撞检测等核心技巧,打造沉浸式游戏体验完全指南
【8月更文挑战第31天】本文是 Unity 2D 游戏开发的全面指南,手把手教你从零开始构建精美的平面冒险游戏。首先,通过 Unity Hub 创建 2D 项目并导入游戏资源。接着,编写 `PlayerController` 脚本来实现角色移动,并添加动画以增强视觉效果。最后,通过 Collider 2D 组件实现碰撞检测等游戏机制。每一步均展示 Unity 在 2D 游戏开发中的强大功能。
159 6
|
2月前
|
测试技术 C# 图形学
掌握Unity调试与测试的终极指南:从内置调试工具到自动化测试框架,全方位保障游戏品质不踩坑,打造流畅游戏体验的必备技能大揭秘!
【9月更文挑战第1天】在开发游戏时,Unity 引擎让创意变为现实。但软件开发中难免遇到 Bug,若不解决,将严重影响用户体验。调试与测试成为确保游戏质量的最后一道防线。本文介绍如何利用 Unity 的调试工具高效排查问题,并通过 Profiler 分析性能瓶颈。此外,Unity Test Framework 支持自动化测试,提高开发效率。结合单元测试与集成测试,确保游戏逻辑正确无误。对于在线游戏,还需进行压力测试以验证服务器稳定性。总之,调试与测试贯穿游戏开发全流程,确保最终作品既好玩又稳定。
92 4
|
3月前
|
图形学 缓存 算法
掌握这五大绝招,让您的Unity游戏瞬间加载完毕,从此告别漫长等待,大幅提升玩家首次体验的满意度与留存率!
【8月更文挑战第31天】游戏的加载时间是影响玩家初次体验的关键因素,特别是在移动设备上。本文介绍了几种常见的Unity游戏加载优化方法,包括资源的预加载与异步加载、使用AssetBundles管理动态资源、纹理和模型优化、合理利用缓存系统以及脚本优化。通过具体示例代码展示了如何实现异步加载场景,并提出了针对不同资源的优化策略。综合运用这些技术可以显著缩短加载时间,提升玩家满意度。
102 5
|
2月前
|
前端开发 图形学 开发者
【独家揭秘】那些让你的游戏瞬间鲜活起来的Unity UI动画技巧:从零开始打造动态按钮,提升玩家交互体验的绝招大公开!
【9月更文挑战第1天】在游戏开发领域,Unity 是最受欢迎的游戏引擎之一,其强大的跨平台发布能力和丰富的功能集让开发者能够迅速打造出高质量的游戏。优秀的 UI 设计对于游戏至关重要,尤其是在手游市场,出色的 UI 能给玩家留下深刻的第一印象。Unity 的 UGUI 系统提供了一整套解决方案,包括 Canvas、Image 和 Button 等组件,支持添加各种动画效果。
122 3