机器学习实战篇——用支撑向量算法在Kaggle上跑个分

简介: 之前写了关于人工智能和机器学习的理论基础文章,今天就理论联系实际,用机器学习算法跑个分。机器学习最重要的就是数据,Kaggle平台提供了大量数据为机器学习的学习者和研究者提供一个跑分的平台。

之前写了关于人工智能和机器学习的理论基础文章,今天就理论联系实际,用机器学习算法跑个分。

机器学习最重要的就是数据,Kaggle平台提供了大量数据为机器学习的学习者和研究者提供一个跑分的平台。注册账号登录之后就可以进入比赛了,初学者可以从Digit Recognizer入手,也就是识别手工书写的数字。

作为一个菜鸟,我目前最好的成绩是识别率97.228 排名第1189位。

img_a40e5d6fb0a44424eb4bbddfc1d56abd.png

这个成绩是我用支撑向量(SVM)算法获得的,所以今天就来介绍如何用SVM来实现识别手写数字。

一、下载处理数据

首先导入需要用到的python库文件, pandas 和 sklearn 是机器学习非常重要的库文件。

import pandas as pd
import matplotlib.pyplot as plt, matplotlib.image as mpimg
from sklearn.model_selection import train_test_split
from sklearn import svm
%matplotlib inline

数据文件是csv格式的所以需要用panda 库来处理

labeled_images = pd.read_csv('train.csv')
images = labeled_images.iloc[:,1:]
labels = labeled_images.iloc[:,:1]
train_images, test_images,train_labels, test_labels = train_test_split(images, labels, 
                                                                       train_size=0.95, random_state=0)

train_test_split 函数是用来将数据成两组,训练组和验证组,其中训练组占95%。

每一张图片实际上是一个28 x 28 的黑白带灰阶的图片。


img_38462ce843b227314af2ceddc127ab2c.png
image.png

学习之前还需要将数据normalize, 这里用到了sklearn 中的 standardscaler 函数

img_108f5ee04cea5cb486bc06bcc886a73b.png
image.png

二、用Sklearn的SVM学习数据

将normalize 后的数据送进分类器中,总共四行代码完成训练和评分,结果是0.977142的准确率

from sklearn.svm import SVC
clf = svm.SVC(kernel = "poly", degree = 3, coef0=0.1, C=100)
clf.fit(train_images_scaled, train_labels.values.ravel())
clf.score(test_images_scaled,test_labels)

三、用训练好的分类器来标记数据

导入未标记的测试数据,result 就是标记后的数据

test_data=pd.read_csv('test.csv')
test_data_scaled = scaler.transform(test_data)
results=clf.predict(test_data_scaled)

这就是我用SVM训练分类器,并用分类器标记数据,最后取得97%准确率的训练结果的所有代码,是不是很简单。


————
相关文章
AI学习笔记——循环神经网络(RNN)的基本概念
AI学习笔记——神经网络和深度学习
AI学习笔记——卷积神经网络1(CNN)
————
文章首发steemit.com 为了方便墙内阅读,搬运至此,欢迎留言或者访问我的Steemit主页

目录
相关文章
|
5月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
2月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
452 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
1月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
1月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
8月前
|
人工智能 编解码 算法
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
8569 71
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
|
12月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
173 1
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
249 2
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
243 4
|
消息中间件 存储 算法
这些年背过的面试题——实战算法篇
本文是技术人面试系列实战算法篇,面试中关于实战算法都需要了解哪些内容?一文带你详细了解,欢迎收藏!
|
算法 安全 数据安全/隐私保护
Android经典实战之常见的移动端加密算法和用kotlin进行AES-256加密和解密
本文介绍了移动端开发中常用的数据加密算法,包括对称加密(如 AES 和 DES)、非对称加密(如 RSA)、散列算法(如 SHA-256 和 MD5)及消息认证码(如 HMAC)。重点讲解了如何使用 Kotlin 实现 AES-256 的加密和解密,并提供了详细的代码示例。通过生成密钥、加密和解密数据等步骤,展示了如何在 Kotlin 项目中实现数据的安全加密。
652 1

热门文章

最新文章