[雪峰磁针石博客]python计算机视觉深度学习2图像基础

简介: 构建自己的图像分类器之前需要了解图像是什么。 像素:图像的元素 像素是图像的基本元素。每个图像都由一组像素组成。没有比像素更细的粒度。 通常像素是光的“颜色”或“强度”。 下图的分辨率为1,000×750,这意味着它是1,000像素宽750像素高。

构建自己的图像分类器之前需要了解图像是什么。

像素:图像的元素

像素是图像的基本元素。每个图像都由一组像素组成。没有比像素更细的粒度。

通常像素是光的“颜色”或“强度”。

下图的分辨率为1,000×750,这意味着它是1,000像素宽750像素高。我们可以将图像概念化为(多维)矩阵。图片中总共有1,000×750 = 750,000像素。

image.png

大多数像素以两种方式表示:
1.灰度/单通道
2.颜色

在灰度图像中,每个像素是0到255之间的标量值,其中零对应为“黑色”,255为“白色”。
image.png

彩色像素通常在RGB颜色空间中表示(其他颜色空间通常要转成RGB)。

image.png

黑色:(0, 0, 0)
红色:(255, 0, 0)

RGB色彩空间的主要缺点包括:
•不使用“颜色选择器”工具时表示颜色不直观
•它不像人类看待颜色的方式。

image.png

image.png

图像坐标系统

OpenCV和scikit-image用多维NumPy数组表示RGB。

image.png

import cv2
image = cv2.imread("example.png")
print(image.shape)
cv2.imshow("Image", image)
cv2.waitKey(0)

执行结果:

$ python load_display.py
(248, 300, 3)

像素访问

(b, g, r) = image[20, 100] # accesses pixel at x=100, y=20
(b, g, r) = image[75, 25] # accesses pixel at x=25, y=75
(b, g, r) = image[90, 85] # accesses pixel at x=85, y=90

OpenCV的存储顺序:Blue, Green, Red

  • 技术支持qq群144081101 591302926 567351477 钉钉免费群:21745728

缩放

image.png

多数神经网络和卷积神经网络应用于图像任务分类要求固定大小的输入,意味着你通过的所有图像的尺寸必须相同。输入的宽度和高度图像尺寸的常见选择卷积神经网络包括32×32,64×64,224×224,227×227,256×256和299×299。

image.png

相关文章
|
12天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
107 59
|
7天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
7天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
38 5
|
7天前
|
机器学习/深度学习 数据采集 数据可视化
智能食品消费行为分析:基于Python与深度学习的实现
智能食品消费行为分析:基于Python与深度学习的实现
48 7
|
8天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
25 2
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
31 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
7天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
24 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
42 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
13天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
40 6
|
10天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
29 2