机器学习实战之主成分分析(PCA)

简介: 如果人类适应了三维,去掉一个维度,进入了二维世界,那么人类就会因为缺少了原来所适应的一个维度,而无法生存。 ——《三体》在许多科幻电影中,有许多降维的例子。
img_04e81d7968f6758c8d4691be4cd49aa6.png

如果人类适应了三维,去掉一个维度,进入了二维世界,那么人类就会因为缺少了原来所适应的一个维度,而无法生存。 ——《三体》

在许多科幻电影中,有许多降维的例子。在《十万个冷笑话2》(可能只有萌新看过)中,大boss将主角降维到二维,就成了纸片人,进而失去了战斗能力;降维到一维,就变成了线条,这就是降维打击。

说直白点,降维就是将维度降低。在机器学习中,降维常常用来做数据的预处理。为什么要对数据进行降维了?那来从数据本身说起。

  • 大数据时代,数据冗余,维度高。例如个人用户信息,存储了身份证,同时也存储了生日,就造成了冗余。
  • 数据维度有相关性。例如,人脸头像具有对称性,去掉一般的像素点也是没有太大问题的。
  • 数据有噪声。噪声对学习会产生干扰,去掉噪声可以提高算法的精度。

那如何进行降维了?难道要随机去掉一些维度吗?答案是否定的。直接去掉维度会导致数据信息的大量确实。主成分分析(PCA)技术可以尽量保证数据信息少量减小的情况下,进行维度的缩减。

PCA原理

首先看下图,这是一个二维数据,有三个类别(不同颜色表示)。我们希望将其降到一维,那是按u1方向投影还是按u2方向呢。明显可以看出,u1比u2好。

img_042889503003d7e56a88db5ba918f9e1.png
推导

为什么说u1比u2好呢?我们可以基于两点进行解释。

  • 样本点到这个直线的距离足够近。
  • 样本点在这个直线上的投影能尽可能的分开。

基于这两个原则,进行公式推导(这里进行省略),可以得到下面公式。XXT为样本的协方差矩阵。

img_a9cc499a47aeb8ec5252a73ecc1500c7.png
流程

根据公式可以得到PCA的流程:

  • 去除平均值
  • 计算协方差矩阵
  • 计算协方差矩阵的特征值和特征向量
  • 特征值从大到小排序
  • 保留最上面的N个特征向量
  • 将数据转换到N个特征向量构建的新空间

PCA代码

数据情况

首先编写代码读入数据,可以看出其为二维数据。

from numpy import *

def loadDataSet(filename):
    dataMat = []
    fr = open(filename)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = list(map(float,curLine))
        dataMat.append(fltLine)
    return mat(dataMat)
img_b763c88162b9beddb653adfef2bf36fe.png
算法代码

通过上述的算法流程,对代码进行编写,最后可视化降维后的结果。

def pca(dataMat, topNfeat=9999999):
    meanVals = mean(dataMat, axis=0)
    meanRemoved = dataMat - meanVals
    covMat = cov(meanRemoved, rowvar=0)
    eigVals,eigVects = linalg.eig(mat(covMat))
    eigValInd = argsort(eigVals)
    eigValInd = eigValInd[:-(topNfeat+1):-1]
    redEigVects = eigVects[:,eigValInd]
    lowDataMat = meanRemoved * redEigVects
    reconMat = (lowDataMat * redEigVects.T) + meanVals
    return lowDataMat, reconMat
img_d99873d3ad1e6fe4114db5c5b3ec8f21.png

算法优缺点

  • 优点:降低数据复杂度
  • 缺点:有可能损失有用信息

我的博客即将搬运同步至腾讯云+社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=25flb1mm7rtws

相关文章
|
19天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
107 15
|
24天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
75 12
|
2月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
267 5
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
81 5
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
110 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
73 0
|
8月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
262 14
|
8月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
146 1
|
8月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
下一篇
开通oss服务