机器学习:物联网成功的诀窍?

简介: 物联网(IoT)有着巨大的潜力,几乎没有哪项技术能与其相媲美,并且它几乎在每一个领域都释放出了新的机遇和创新。因此,全球企业正在安装比以往更多的传感器,以利用物联网的发展潜力。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

image

物联网(IoT)有着巨大的潜力,几乎没有哪项技术能与其相媲美,并且它几乎在每一个领域都释放出了新的机遇和创新。因此,全球企业正在安装比以往更多的传感器,以利用物联网的发展潜力。

但如果没有适当的数据管理策略,这些传感器的实施可能会适得其反。企业可能会发现自己的服务器被大量噪音所堵塞,而不是提高效率和降低成本,而且也没有获得多少回报。

物联网工作的主要障碍

物联网的应用范围很广,您可以在智能家居照明系统,以及智能手机的制造流程中找到这项技术的影子,并且,现在几乎每个行业都在某种程度上依赖它。

但无论我们关注哪种物联网应用,它们几乎都面临着四个共同问题:

▲安全

当涉及物联网时,安全和隐私是首要考虑因素。数据是物联网的生命线,如果没有数据的收集、传输和处理,则物联网将无法完成任何工作。但是,这种数据交换必须由坚如磐石的安全性来支持。保持所有通信的安全是至关重要的,尤其是涉及到个人数据,如医疗设备收集的数据。

▲准确性

现在,您可以在任何地方找到物联网传感器,但这并不一定意味着您应该把物联网传感器放在任何地方。有些地方适合安装物联网传感器,有些则不能。如果您选择将物联网传感器安装在有问题或恶劣的环境中,则可能会遇到错误或无数据的情况——这可能严重影响您使用任何算法获得的结果。

▲大数据的3V特性

规模化、多样化和速度是大数据的三个特性。规模化指的是数据量,多样化是指可用的数据类型众多。速度是指处理数据的速度。如果您想为数据找到最佳的算法,并为您的问题找到最佳的解决方案,那么注意这些因素是必不可少的。

▲互联性

显然,物联网最具革命性的能力之一是让不相连的设备彼此“沟通”。但是,由于每个设备的创建方式不同,因此说起来容易做起来难。例如,您如何让您的冰箱和您的咖啡机沟通?多个设备之间的交互需要一种通用语言或通信协议来完成。

为什么是机器学习?

正如机器学习的名字所暗示的那样,它专注于教机器如何学习。机器学习本质上是一种使分析模型构建自动化的数据分析方法。通过以正确的方式向系统提供正确的数据,系统可以从这些数据中学习,识别模式,然后做出决策或采取行动。

这是每个机器学习应用的核心,它可以极大地帮助物联网的发展。让我们看一下它的两种主要实现方式。

▲自动化数据分析

就在几年前,无人驾驶汽车还停留在科幻小说阶段。如今,得益于物联网和人工智能方面的进步,这项技术终于得以实现。为了发挥作用,无人驾驶汽车需要传感器通信和数据分析的精心协调。

当车辆行驶时,传感器接收数千个数据点。这些数据必须在瞬间处理,以防止事故发生。人类分析师根本无法满足这些闪电般的需求,因此自动化是实现这一目标的唯一方法。

机器学习为无人驾驶汽车的计算机提供了所需的功能,以过滤大量数据并专注于此时此刻最重要的事情。无论是速度、道路障碍物,还是附近的其他车辆,机器学习都能找到最相关的数据,并在瞬间给出解决方案,让您能够安全到达目的地。

▲无与伦比的预测能力

除了识别当前的障碍之外,机器学习还可以帮助物联网系统了解更多常规模式。就汽车而言,机器学习可以帮助识别某些操作过程中仍需改进的地方。

例如,假设您在停车入位时遇到麻烦。汽车的计算机可以在多次迭代后学习这种洞察力,然后在这个可怕的停车过程中提供额外指导。这样以来,狭窄的街道似乎不再那么令人恐惧了。

同样,物联网系统中的机器学习还可以检测异常活动或异常值,并触发适当措施和危险信号以进行保护。(来源物联之家网)这不仅有助于解决传统意义上的安全,而且还有助于解决许多通常没有考虑到的其他问题。

例如,想象一下,如果您办公室的空调系统过度工作,并因此消耗更多电量。正如谷歌在其暖通空调系统中所展示的那样,机器学习可以随着时间推移而逐渐进化,并显著降低能耗。

总结

通过机器学习,物联网可以完美地运行。如今,全球各地的组织正在竞相利用物联网的能力,但是,其中许多组织都被我们讨论过的一个或多个障碍所困扰。不过,不管您遇到什么问题,都可以通过结合了机器学习技术的方法来解决。

下次当您在物联网方面遇到问题时,请考虑机器学习,这是让您物联网系统更智能的诀窍。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-05-26
本文作者:iothome.com
本文来自:“物联之家网”,了解相关信息可以关注“物联之家网

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
7月前
|
机器学习/深度学习 人工智能 算法
机器学习与人工智能在物联网中的应用
【6月更文挑战第6天】在一个阳光明媚的早晨,我听到同事热议机器学习和人工智能在物联网的应用,如智能家居、工业生产和医疗诊断。通过分析物联网的海量数据,这些技术带来便利与效率的提升。示例代码展示了如何使用机器学习算法进行数据分析。尽管面临数据安全等挑战,但未来前景广阔,我决定投身这一领域,探索更多可能。
122 2
|
7月前
|
机器学习/深度学习 人工智能 算法
机器学习与人工智能在物联网中的应用
【6月更文挑战第5天】在这个物联网时代,智能设备间的交互变得日益频繁。机器学习与人工智能赋予了这些设备学习和协作的能力,使它们能更好地理解和适应用户需求。例如,智能空调利用机器学习了解用户习惯,预调至适宜的温度;而人工智能在安防系统中通过视频分析识别异常行为,保障安全。此外,它们还应用于智能农业、交通、医疗等领域,如预测农作物生长、优化交通路线、提升医疗服务。一个简单的Python代码示例展示了如何用机器学习预测室内温度变化,揭示了其在物联网中的潜力。
141 1
|
7月前
|
机器学习/深度学习 传感器 算法
物联网(IoT)数据与机器学习的结合
【6月更文挑战第6天】物联网和机器学习加速融合,驱动数据收集与智能分析。通过机器学习算法处理 IoT 数据,实现智能家居、工业生产的智能化。示例代码展示如何用线性回归预测温度。结合带来的优势包括实时监测、预警、资源优化,但也面临数据质量、隐私安全、算法选择等挑战。未来需强化技术创新,应对挑战,推动社会智能化发展。
204 0
|
8月前
|
机器学习/深度学习 传感器 物联网
【Python机器学习专栏】机器学习在物联网(IoT)中的集成
【4月更文挑战第30天】本文探讨了机器学习在物联网(IoT)中的应用,包括数据收集预处理、实时分析决策和模型训练更新。机器学习被用于智能家居、工业自动化和健康监测等领域,例如预测居民行为以优化能源效率和设备维护。Python是支持物联网项目机器学习集成的重要工具,文中给出了一个使用`scikit-learn`预测温度的简单示例。尽管面临数据隐私、安全性和模型解释性等挑战,但物联网与机器学习的结合将持续推动各行业的创新和智能化。
225 1
|
存储 机器学习/深度学习 人工智能
数据网格在物联网、人工智能和机器学习中的用例和应用
在这篇文章中,我们讨论了网格在不同设置中的实际应用。
229 15
数据网格在物联网、人工智能和机器学习中的用例和应用
|
机器学习/深度学习 传感器 存储
为什么人工智能和机器学习与物联网紧密结合
IoT 中的 AI 和 ML 分析通过使用语义将原始数据转换为可操作的见解来实现生产力、效率和有效性的提升。
535 0
为什么人工智能和机器学习与物联网紧密结合
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
124 4
|
1天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
25 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
17天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
41 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
52 1

热门文章

最新文章

相关产品

  • 物联网平台